
STINFO COPY
AFRL-HE-WP-TR-2005-0006U ntdS ae Ai Fo c

United States Air Force
Research Laboratory

A High-Level Symbolic Representation
for Intelligent Agents across Multiple

Architectures

Jacob Crossman
Robert Wray
Paul Nielsen

Randolph M. Jones
Al Wallace

Soar Technology, Inc.
3600 Green Court, Suite 600

Ann Arbor, MI 48105

Christian Lebiere

Micro Analysis & Design
4949 Pearl East Circle, Suite 300

Boulder, CO 80301

July 2004

Final Report for the Period April 2003 to July 2004

20050425 063
Human Effectiveness Directorate
Warfighter Interface Division

Approved for public release; distribution is unlimited. Cognitive Systems Branch

2698 G Street
Wright-Patterson AFB OH 45433-7604

NOTICES

When US Government drawings, specifications or other data are used for any purpose other than
a definitely related Government procurement operation, the Government thereby incurs no
responsibility nor any obligation whatsoever, and the fact that the Government may have
formulated, furnished, or in any way supplied the said drawings, specifications or other data, is
not to be regarded by implication or otherwise, as in any manner licensing the holder or any other
person or corporation, or conveying any rights or permission to manufacture, use, or sell any
patented invention that may in any way be related thereto.

Please do not request copies of this report from the Air Force Research Laboratory. Additional
copies may be purchased from:

National Technical Information Service
5285 Port Royal Road
Springfield, VA 22161

Federal Government agencies and their contractors registered with the Defense Technical
Information Center should direct requests for copies of this report to:

Defense Technical Information Center
8725 John J. Kingman Road, Suite 0944
Ft. Belvoir, VA 22060-6218

TECHNICAL REVIEW AND APPROVAL

AFRL-HE-WP-TR-2005-0006

This report has been reviewed by the Office of Public Affairs (PA) and is releasable to the
National Technical Information Service (NTIS). At NTIS, it will be available to the general
public, including foreign nations.

This technical report has been reviewed and is approved for publication.

FOR THE COMMANDER

//SIGNED//

MARIS M. VIKMANIS
Chief, Warfighter Interface Division
Air Force Research Laboratory

Form Approved
REPORT DOCUMENTATION PAGE OMB No. 0704-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the
data needed, and completing and reviewing this collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing
this burden to Department of Defense, Washington Headquarters Services, Directorate for Information Operations and Reports (0704-0188), 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-
4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to any penalty for failing to comply with a collection of information if it does not display a currently
valid OMB control number. PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.

1. REPORT DATE (DD-MM-YYYY) 2. REPORT TYPE 3. DATES COVERED (From - To)

July 2004 Final April 2003 - July 2004
4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER
A High-Level Symbolic Representation for Intelligent Agents F33615-03-C-6343

across Multiple Architectures 5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

63832D
6. AUTHOR(S) 5d. PROJECT NUMBER

Jacob Crossman, Robert Wray, Paul Nielsen, Randolph M. Jones,

Al Wallace, Christian Lebiere 5e. TASK NUMBER

5f. WORK UNIT NUMBER

0476DM03
7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION REPORT

NUMBER

Soar Technology, Inc. Micro Analysis & Design
3600 Green Court 4949 Pearl East Circle
Suite 600 Suite 300
Ann Arbor, MI 48105 Boulder, CO 80301
9. SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSORIMONITOR'S ACRONYM(S)

Air Force Research Laboratory

Human Effectiveness Directorate

Warfighter Interface Division 11. SPONSOR/MONITOR'S REPORT

Cognitive Systems Branch NUMBER(S)

Wright-Patterson AFB OH 45433-7604 AFRL-HE-WP-TR-2005-0006

12. DISTRIBUTION I AVAILABILITY STATEMENT

Approved for public release; distribution is unlimited.

13. SUPPLEMENTARY NOTES

14. ABSTRACT
This report describes the High-Level Symbolic Representation (HLSR) project for the U.S. Air Force PRDA 03-01-HE:
Human Performance in Modeling and Simulation, Technical Area 2: Opposing Force Behaviors. This report summarizes the
work done on Defense Modeling Simulation contract F33615-03-C-6343 to develop a high level symbolic representation
(HLSR) for behavior modeling. This effort seeks to increase development efficiency and reuse in behavior modeling.
The report describes the development of a high level language that abstracts the details of individual intelligent
system architectures (ISA), allowing developers to focus their effort on tasks directly related to producing
intelligent behavior. This language is designed to be complied into executable representations on multiple ISAs. This
report targets two ISAs, Soar and ACT-R. These ISAs have a proven tract record of generating capable behavior models
in many domains. There were three primary goals. First, the desire to construct a specification for HLSR sufficient
for its use in behavior modeling and for compiler design and implementation. Second, the desire to define mappings
and probable transformation processes from HLSR to Soar and ACT-R. Third, the desire to prove the feasibility of this
approach by demonstrating how HLSR solved real problems faced by knowledge engineers and how an HLSR model, which
solved these problems, could be compiled to an ISA.

15. SUBJECT TERMS Intelligent System Architecture (ISA), Modeling and Simulation, Opposing
Force Behaviors, Environmental Representation, Human Performance Modeling, Model Validation
16. SECURITY CLASSIFICATION OF: 17. LIMITATION 18. NUMBER 19a. NAME OF RESPONSIBLE PERSON

OFABSTRACT OFPAGES Lt. R. Benjamin Hartlage
a. REPORT b. ABSTRACT c. THIS PAGE 19b. TELEPHONE NUMBER (include area

UNCLASSIFIED UNCLASSIFIED UNCLASSIFED SAR 184 code)
(937)255-9662

Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std. 239.18

THIS PAGE LEFT INTENTIONALLY BLANK

ii

Table of Contents

Introduction ... 1

1.1 The Problem and the HLSR Solution ... 1

1.2 Related Work .. 3

1.3 Document Organization .. 6

2 Research and Development ... 8

2.1 Research Questions and Methodology .. 8

2.1.1 Research Questions .. 8

2.1.2 Research Methodology ... 10

2.2 Research and Analyze HLSR Development Requirements 11

2.2.1 Catalog of Common Problems and Solutions ... 12

2.2.2 Development Principles for Behavior Modeling .. 17

2.2.2.1 Least commitment to Dependencies .. 17

2.2.2.2 Encapsulation .. 19

2.2.2.3 Explicit Declaration of Intention .. 21

2.2.2.4 Abstract Low Level Details 23

2.3 Research and Analyze Cognitive Architectures ... 25

2.3.1 Leveraging Cognitive Architectures ... 26

2.3.1.1 Blended Reactivity and Goal Directed Behavior .. 26

2.3.1.2 Symbolic Encoding of Knowledge with Associative Retrieval 28

2.3.1.3 Comparison and Selection of Alternatives via Conflict Resolution 28

2.3.1.4 Pervasive, Continuous Adaptation through Learning 29

iii

2.3.2 Com m on Structures in Intelligent System s ... 30

2.3.2.1 Goals ... 30

2.3.2.2 Beliefs ... 32

2.3.2.3 Transform s ... 33

2.3.2.4 Preferences ... 35

2.3.3 Com m on Processes in Intelligent System s .. 36

2.3.3.1 The Decision Process and Least Commitment to Execution Path 36

2.3.3.2 CCRU .. 37

2.3.3.3 Goal Driven Behavior .. 39

2.3.3.4 Reactive Consideration ... 41

2.3.4 The Principle of A rchitecture D iscretion ... 43

2.4 H LSR Requirem ents ... 47

2.5 Form al H LSR Specification .. 51

2.5.1 Core Prim itive Constructs .. 51

2.5.1.1 Constructs for Reactivity ... 53

2.5.1.2 Constructs for G oal Driven Behavior ... 55

2.5.1.3 Constructs for Encapsulation and Packaging .. 57

2.5.2 Prim itive M em ory Processes: CCRU ... 59

2.5.3 Behavior Prim itives for Sensing .. 62

2.5.4 Behavior Prim itives for M otor Actions ... 64

2.5.5 Failure H andling ... 65

2.6 Com piler D esign .. 67

2.6.1 Com piler Requirem ents .. 68

iv

2.6.2 Com piler H igh-Level D esign ... 69

2.6.2.1 Parser D esign ... 70

2.6.2.2 Code G enerator D esign .. 70

2.6.2.3 Run-tim e Libraries .. 71

2.6.3 Reference M odels .. 72

3 Feasibility D em onstration ... 75

3.1 Tools and Editing Environm ents ... 76

3.2 The A M BR Exam ple ... 78

3.2.1 A M BR Problem Specification .. 80

3.2.2 AM BR Problem D esign .. 83

3.2.3 H LSR Code .. 85

3.2.4 A lternative approaches to m apping ... 91

3.2.5 Results of Feasibility Evaluation .. 93

3.2.6 Progress towards a prototype HLSR2Soar compiler .. 97

4 Results and Conclusions ... 100

4.1 Prelim inary Evaluation ... 100

4.1.1 Solving Catalog Problem s ... 100

4.1.2 M eeting H LSR Requirem ents ... 106

4.1.3 Answ ers to Research Questions .. 107

4.2 A ccom plishm ents Sum m arized .. 114

4.2.1 Research A ccom plishm ents .. 114

4.2.2 Language D esign A ccom plishm ents ... 114

4.2.3 Com piler D esign A ccom plishm ents ... 115

v

4.3 Lessons Learned .. 116

4.4 Key Open Issues ... 118

5 References ... 121

6 List of Acronym s .. 124

Appendix A Complete Catalog of Problem s and Solution Patterns 126

Appendix B Standard Behavior Prim itives ... 140

Appendix C Relevant HLSR Code for AM BR Example .. 148

Appendix D Relevant Soar Code for the AM BR Example ... 155

Appendix E Relevant ACT-R Code for the AM BR Example .. 169

vi

Acknowledgements

This report describes the High-Level Symbolic Representation (HLSR) project for the

U.S. Air Force PRDA 03-01-HE: Human Performance in Modeling and Simulation, Technical

Area 2: Opposing Force Behaviors.

We would like to thank our program and technical sponsors, Dr. Sheila Banks

(AFRL/HECS), Dr. Mike Young (AFRL/HECS), Mr. Jim Anthony (DMSO), and Ms. Helen

Redwine-Smith (AFRL/HEF) for their interest in and support of this project. We would also like

to thank the government project managers, Lt. Randy Allen (AFRL/HECS) and Lt. Ben Hartlage

(AFRL/HECS) for monitoring and administering this project. With the support provided by

program and technical sponsors, we were able to develop a functional specification and

prototype compiler design for HLSR.

We also thank our teammate and subcontractor, Dr. Christian Lebiere for his technical

support of this project. Dr. Lebiere provided outstanding support to the project and valuable

insight into the ACT-R cognitive model.

Finally, we would like to thank the entire Soar Technology team for the tremendous and

successful effort they applied to this program. This program would never have achieved its goals

without the considerable efforts of Mr. Jacob Crossman, Dr. Robert Wray, and Dr. Randolph

Jones, as well as Mr. David Ray and Mr. Patrick Kenney who helped implement elements of the

HLSR2Soar compiler. We also would like to thank Dr. Paul Nielsen, Mr. Jon Beard, Mr. Sean

Lisse, and Mr. Glenn Taylor who helped form the basis of the concept we ultimately

implemented during the execution of this program.

vii

Executive Summary

This report summarizes the work done by Soar Technology, Inc. on Defense Modeling

and Simulation contract F33615-03-C-6343 to develop a high level symbolic representation

(HLSR) for behavior modeling. Large-scale, capable behavior models are very difficult to build.

They require significant effort from highly trained experts in behavior modeling and intelligent

system architectures (ISA). ISAs are the preferred systems on which to build behavior models

because they define unique approaches to computation, enabling intelligent, flexible,

autonomous software that can approximate the richness and sophistication of human behavior.

However, programming within these architectures is tedious and costly. Further, direct reuse of

program elements is rare. Programmers must manage the internal processes of the architectures

at a fine-grained level. Because the programs encode details of architecture, transfer of domain

knowledge across behavior models is presently impractical. These factors all increase cost.

This effort seeks to increase development efficiency and reuse in behavior modeling. We

describe the development of a high level language that abstracts the details of individual ISAs,

allowing developers to focus their effort on tasks directly related to producing intelligent

behavior. This language is designed to be compiled into executable representations on multiple

ISAs. We are targeting two ISAs, Soar and ACT-R. These ISAs have a proven track record of

generating capable behavior models in many domains.

We had three primary goals. First, we desired to construct a specification for HLSR

sufficient for its use in behavior modeling and for compiler design and implementation. Second,

we desired to define mappings and probable transformation processes from HLSR to Soar and

ACT-R. Third, we desired to prove the feasibility of this approach by demonstrating how HLSR

viii

solved real problems faced by knowledge engineers and how an HLSR model, which solved

these problems, could be compiled to an ISA.

To achieve these goals we researched and documented commonalities and differences

between ISAs, focusing on Soar and ACT-R. We also documented common problems and

solutions faced by knowledge engineers as they build and maintain behavior models. Based on

these results, we designed the HLSR language, and developed a formal specification of the

language. We defined mappings from HLSR to ACT-R and Soar that enable the compilation of

HLSR models to native representations. We developed micro-theories for the execution of

HLSR constructs in Soar, and in order to facilitate effective compilation, an ontological model of

Soar that describes the primitives and constraints of the Soar architecture. Finally, we conducted

a feasibility test by designing and implementing a simple behavior model in HLSR. We then

hand compiled this example using the HLSR mappings to Soar and ACT-R.

This effort provides important advances. First, the specification for HLSR is defined in

sufficient detail to enable the development of behavior models in this language. HLSR is

independent of any ISA, and is thus unique among behavior representations. Second, we have

shown both at the conceptual level and at the implementation level that HLSR models can be

compiled to both Soar and ACT-R. Our analysis suggests HLSR addresses many of the issues

that make behavior development inefficient and difficult. Critically, ISA-independence enables

the abstraction of ISA details that distract from the modeling process and require specialized ISA

training. Furthermore, the HLSR specification (and the supporting theoretical results) provide a

mature foundation for full scale compiler development.

ix

THIS PAGE LEFT INTENTIONALLY BLANK

x

1 Introduction

1.1 The Problem and the HLSR Solution

Currently, intelligent systems are encoded in knowledge representations specific to

particular intelligent system architecture (ISA). Examples of such architectures include Soar [30,

38, 48] and ACT-R [2, 3], both of which have been used to model complex human decision

making and behavior tasks. For example, ACT-R and Soar models have been developed to

model performance and learning within a simulated air-traffic control task [10, 29] and both

architectures have been used to implement embodied behavior representations for urban combat

training [6, 50]. This process of encoding knowledge for execution on an ISA is typically carried

out by highly trained knowledge engineers and is tedious, time consuming, and error prone.

Thus model development is a costly process.

There are several specific problems with the traditional approach. First, a knowledge

engineer must be trained in the many subtleties and implementation details of the specific

architecture for which they are building the model. Such expertise is difficult (and thus

expensive) to obtain. Furthermore, since most knowledge engineers specialize in a single ISAs,

they cannot take advantage of the capabilities other ISAs. Second, significant effort in building a

behavior model is devoted to managing details of the implementation, rather than adding

capabilities to the model. This effort describes some of these problems in section 2.2.1 and

Appendix A, which we have discovered are largely shared by both Soar and ACT-R. Third,

partly as a result of the first and second problems, behavior models are very difficult to reuse.

Reuse of domain specifications across architectures is non-existent, and, surprisingly, reuse is

rare even within an architecture. Reuse between architectures is hindered both by the

I

architectural details encoded within the model and by the differing design approaches

encouraged by the architectures. Reuse within an architecture is hindered by the following:

1. Different design approaches to managing architecture details, referred to "idioms" [28]

2. A lack of architectural support for engineering tasks such as knowledge encapsulation

3. Varying levels of expertise between knowledge engineers

Together, these problems make architecture-based models expensive to build and maintain,

difficult to reuse, and limited in capability and robustness.

Our long-term objective, of which the HLSR is a critical foundational component, is to

create ISA-independent higher level behavior modeling languages and tools that hide

architectural details and provide higher-level abstractions. We believe that these languages and

tools will enable the following:

1. Behavior developers to spend more time encoding task directed knowledge

2. Tool developers to build better end-user tools for viewing and modifying behaviors

The convergent computational properties of ISAs facilitate this goal. Despite starting from

different intellectual traditions (e.g. artificial intelligence, cognitive psychology, and even

philosophy), knowledge-intensive, embedded ISAs increasingly demonstrate quite similar

computational approaches to intelligent behavior [23]. We describe these commonalities in

sections 2.3.

This convergence in computational approach provides the opportunity to define high-

level languages that can describe behaviors on multiple ISAs. In this effort, we defined one such

language that we refer to as the high level symbolic representation (HLSR). It is high-level in

that its constructs are ISA independent and more abstract than the ISA equivalent structures. It is

symbolic in that its constructs and constraints depend on knowledge being represented

2

symbolically. This HLSR will allow knowledge (agent programs) specified at the HLSR level to

be executed on a variety of target ISAs.

The situation is analogous to the emergence of the high level languages such as

FORTRAN, C++, and Java in computer science. These languages enabled the same

development improvements that we seek with HLSR. Namely, they provided architecture

independence; programs no longer needed to be rewritten for each new architecture.

Furthermore, they abstracted the software developer from the details of architecture

implementation and provided them with constructs that mapped well to programming tasks and

computer science theory. As these languages have developed, they have abstracted more of the

tedious details of programming and enabled larger and more complex systems to be developed.

We see HLSR as an early step in a similar process for ISAs. With HLSR we seek to put

a first layer of abstraction on top of ISAs and prove the feasibility of compilation to multiple

ISAs. We intend that this effort will lead to further efforts to improve HLSR and to build related

development tools and domain-specific representations that leverage HLSR.

1.2 Related Work

As discussed above, the idea of high-level languages is not new, and it is not particularly

novel for intelligent system architectures either. This work shares many similarities with

attempts to build higher level abstractions within the specific architectural paradigms of Soar and

ACT-R. For example, the Task Acquisition Language (TAQL) [51] was developed to allow

Soar programmers to specify knowledge at the level of Soar's basic computational theory (the

Problem Space Computational Model), abstracting some of the theoretical implementation

details necessary for model implementation. More recently, ACT-Simple [39] has been

3

developed to convert models specified at the high level of GOMS1 to ACT-R, resulting in

models that better match human error and that can be developed much more quickly than

comparable ACT-R models [21]. Another GOMS-to-ACT-R compiler, G2A, has also been

developed [40].

While both TAQL and ACT-Simple enable rapid specification of simple models, both

approaches make assumptions that limit their utility for their general application to intelligent

systems. TAQL focused on operator representation in Soar, which is the most strongly

principled Soar representation. However, TAQL did not provide much guidance in the

elaboration and maintenance of beliefs, which has proven extremely important in the

development of Soar applications [22]. This incompleteness meant developers still often needed

to work at the Soar level, defeating many of the advantages of a high level language. ACT-

Simple is tied to the assumptions of GOMS. GOMS covers only a narrow range of expert human

tasks, such as pressing keys and moving a mouse and does not make a commitment to many

elements needed for knowledge-intensive intelligent systems [23]. While ACT-Simple uses

many of ACT-R's mechanisms to cover those missing in GOMS, it does so by making

assumptions about domains and tasks within those domains, limiting its applicability to the

problem of the representation of knowledge for intelligent systems that span many different

application areas. Finally, both of these solutions are specific to a particular architecture. A

crucial innovation of HLSR is that it spans architectures, which will not only lead to reuse of

model components across architectures but also lower barriers to entry for the development of

intelligent systems.

1 Goals, Operators, Methods, and Selection Rules. GOMS is a modeling technique developed and used primarily for

modeling human computer interactions.

4

Attempts to solve the behavior development problem described above need not include

high level languages. Many approaches attempt to speed behavior development via better

development tools. The tools can be divided into two broad categories: integrated development

environments and training behavior systems by observation.

Development environments are a necessary component for efficiently programming any

system. Both ACT-R and Soar have such environments, and work continues to improve them.

However, while development environments make engineers more efficient, they do not change

the level at which engineers do their work. Therefore, while some efficiency improvements can

be achieved with integrated development environment (IDE) improvements, significant changes

in development speed and cost are not likely to be enabled by these tools. In traditional software

engineering, the biggest gains in development speed have been achieved through improved

methodologies and abstractions (e.g. object-oriented programming, component methodologies,

and languages). While tools can support the engineer in using these methodologies and

abstractions, tools are only as good as the representations and abstractions they present to the

user.

Training by example and visual programming systems attempt to reduce behavior

modeling to series of examples that show an agent how to react in various situations [4, 12, 20,

34, 36, 44]. This approach offers the potential to allow end users to "train" intelligent systems.

The cycle of knowledge transfer from subject matter expert (SME) to knowledge engineer (KE)

to end user is broken. Development costs are cheaper, the end user is more likely to get what

they want, and the behavior model can be continuously improved over time. However, many

technical challenges must be resolved before this approach becomes feasible. Currently, such

systems fall far short of the specified goal and operate very much like interactive development

5

environments. One important reason fine-grained iterative refinement is required is the very low

level abstractions and structures on which the tool is built. That is, the intelligent system learns

at the level of architecture primitives rather than higher level behavior. The user is then forced to

interact directly with the terms and idiosyncrasies of the underlying architecture on which the

behavior will ultimately execute. If this project is successful, HLSR may be a better language

target for learning by observation systems than the low level languages of ISAs.

Tools such as development environments and learning by example systems are valuable,

but both could benefit from the higher level, cross-platform abstraction that HLSR provides.

HLSR would provide a common foundation for these tools, assuring that they had a common

methodology and structure behind them, and allowing knowledge developed using these tools to

be shared across different architectures.

1.3 Document Organization

This document is primarily organized around the technical objectives of this effort as

given in the statement of work. These objectives include (slightly reworded for clarity):

1. Research and analyze HLSR development requirements

2. Research and analyze the requirements of cognitive architectures

3. Design specification language

4. Design low-level behavior primitives

5. Create reference model for target architecture

6. Design code generation capability for cognitive models

7. Demonstrate feasibility of the approach

Sections 2.2, 2.3, and 2.4 covers (1) and (2), section 2.5 covers (3) and (4), section 2.5

covers (5) and (6), and finally, section 3 covers (7). For each technical objective we describe our

6

process and the technical outcome. The technical outcome of some objectives is a separate

report or document, which are referenced as appropriate. Final results and evaluation is left to

section 4. Here the results are discussed along with the answers to the key research questions of

the effort.

7

2 Research and Development

2.1 Research Questions and Methodology

This section introduces the research questions that motivated the work and describes the

methodology used in the execution of the work.

2.1.1 Research Questions

While other higher level representations have been built (section 1.2), none to our

knowledge has attempted to apply across multiple ISAs as HLSR does. Because this ambition is

novel, fundamental questions about the feasibility and character of the HLSR solution abound.

A significant portion of this effort focused on answering these questions, which can be

categorized into four board categories:

1. To what extent can a single language be used across multiple ISAs? More specific

research questions include: I

"* Is cross ISA compatibility technically possible (given current methodologies,

tools, and knowledge of ISAs)?

"* If possible, how effectively will HLSR leverage the capabilities of each ISA

"* How similar are ISAs? What are ISA commonalities and differences?

"* Can abstractions be designed that take advantage of similarities?

"* Can the differences be hidden from the developer and managed exclusively by the

compiler?

2. What high level constructs are needed to support programmability and ease-of-use?

8

3. Are behavior systems compatible with traditional methods of encapsulation, and is

encapsulation the best method to improve the reuse of knowledge representations?

"* What aspects of behavior can be encapsulated and reused?

"* What constructs and processes are necessary for encapsulation and reuse of behavior?

"* What aspects of behavior cannot be encapsulated effectively because of ISA

constraints and the processes involved with intelligence?

4. Can an HLSR representation be compiled to an ISA representation and to what extent is

performance efficiency compromised by compilation?

High level constructs and programmability are well understood in computer science and

has been effectively implemented in SE languages and tools, but have not been successfully

implemented in behavior modeling. However, for the sake of ease-of-use, high-level behavior

representations have tended to abstract away some of the details necessary to construct a

behavior model; that is, they have not been complete. Further, ISAs tend to support runtime

adaptation and learning, and changes to knowledge at runtime have not been easy to map back

into the higher level abstraction. For HLSR, these issues lead to two fundamental questions:

"Can HLSR be complete and still high-level?" and "Can learned knowledge be merged with

HLSR knowledge without requiring the engineer or end user to understand the details of the ISA

executed the behavior?"

Encapsulation and reuse are also common elements of traditional SE. In fact, traditional

SE has made significant, though incomplete, strides in this direction for the past few decades.

However, behavior modeling is resistant to encapsulation. Is it because it is fundamentally

impossible to decompose and encapsulate behaviors into reusable modules? Or is it because

knowledge engineers tend to focus their engineering efforts on different aspects of the problem

9

other than encapsulation and reuse? We believe that it is fundamentally difficult to decompose

behaviors due in part to the complex dependencies they require. For example, determining and

understanding the actual modularity in human behavior is a long-standing research issue and

source of significant contention in cognitive psychology [14].

Compilation process and efficiency is the most practical of the issues addressed in this

effort. These issues are primarily engineering issues, and as such are not a primary focus of this

effort. However, we are interested in two fundamental question regarding compilation and

efficiency that directly effect the feasibility of our approach. First, we would like to answer the

question "Can a compilation process be defined that correctly transforms HLSR constructs to

ISA constructs?" Second, we would like to answer the question "Are there any fundamentally

intractable problems in compilation or execution of compiled knowledge?" If the answers to

these questions are "yes" and "no" respectively, we are confident that incremental engineering

advancements can improve efficiency over time.

All of the questions have been addressed within this project effort; however, some require

continued efforts such as full-scale compiler implementation and case studies to answer

effectively. Section 4.1.3 summarizes our answers to these questions given the research and

development in this effort.

2.1.2 Research Methodology

Our methodology centers on the computer science concept of "proof by construction."

We proposed to build an HLSR and show how it can compile to two ISAs - Soar and ACT-R.

To answer the questions related to questions about cross ISA compatibility, we

researched and documented the similarities and differences between ISAs, in particular between

Soar and ACT-R. The outcome of this process is summarized in section 2.3. To answer

10

questions related to high-level constructs and programmability, we constructed a catalog of

common patterns and solutions in behavior development discussed in section 2.2.1. We then

attempted to develop solutions in HLSR that reduce or eliminate the knowledge engineering

effort necessary to manage these patterns. To answer questions related to encapsulation and

reuse, we analyzed traditional SE approaches to encapsulation and reuse, and selected those that

best integrated with ISAs for inclusion in the HLSR specification. The results of this effort are

principles of behavior model development (section 2.2.2) and core HLSR primitive constructs

for encapsulation (see 2.5.1).

To answer questions related to compilation process and efficiency, as well as the

overarching question of HLSR feasibility, we conducted a feasibility demonstration. The details

of this demonstration are given in section 3. The feasibility test included selection of a small

problem then walking through the design, encoding, compilation, and (in the case of Soar)

execution phases using HLSR. The compilation process is still in its primitive stages and for our

feasibility demonstration was done by hand. However, a limited functionality prototype

compiler has been implemented for Soar (described in 3.2.6).

2.2 Research and Analyze HLSR Development Requirements

An initial task of this project was to understand the issues related to the intelligent system

design and development process in sufficient detail to design solutions. To accomplish this goal

we analyzed intelligent system programming tasks for patterns of problems and solutions. This

catalog informed the HLSR requirements discussed in section 2.4 and led to principles of

development that constrain the HLSR specification.

11

2.2.1Catalog of Common Problems and Solutions

The catalog of common problems and solutions summarizes the common patterns of

problems and solutions a Soar or ACT-R developer typically faces and manages when

developing a behavior model. These patterns describe in detail the difficulties of building and

maintaining behavior models. Furthermore, the HLSR specification defines specific constructs,

constraints, and processes to help make these patterns easier or unnecessary to implement.

We divided the catalog into three sections as follows:

"* Catalog of Low-level Details HLSR Should Abstract

"* Catalog of High-level Tasks HLSR Should Make Easier

"• Catalog of Micro-Patterns That Developers Typically Use

Developers from the HLSR development team each contributed a description of two or

more common patterns from their own experience building and maintaining behavior models for

Soar and ACT-R. The complete catalog is provided as Appendix A. Here we summarize the

catalog in development. Table 1 below.

Problem/Pattern F Description Impact on Development

Catalog of Low-level Details HLSR Should Abstract
Process tagging "Process done" and "process Process specific structure gets

status" tags to track the state of "tangled" with structure that is
processes that manipulate intrinsic to objects, leading to
knowledge structures maintenance problems.

Logic Tricks Using logic axioms to simulate Developers use obscure logic tricks to
missing logical primitives (e.g. implement the missing logic operators.
"or",) Difficult to understand, debug, and

maintain.
Copying and Creating copies of an object as Developers spend time writing
Memory well as creating special case structure specific copy code, many
Manipulations knowledge for managing different times repeatedly for different contexts.

forms of copying (e.g. This wastes development time and
replacement v. creating from maintenance costs increases because
scratch). each point of copy has to be

1 maintained.

12

Detailed Structure Managing the details of Developers spend a lot of time
Specification knowledge structures such as twiddling with the details of

layout, decomposition of larger knowledge structure, rather than
structures to smaller structures, solving the task of interest.
and linking different structures

1 together.
Catalog of High-level Tasks HLSR Should Make Easier

Planning Managing the details involved Developers either don't use planning
with planning such as creating processes, or create their own, usually
and maintaining imaginary states, limited process from scratch for each
executing projections, tracking application.
and modifying plans, etc.

Writing production Specifying the processes that are Developers encode constraints and
code procedurally being carried out as a series of dependencies in a set of productions.

procedural constraints, leaving These dependencies are implicit and
conversion to productions to the hard to understand and track leading
compiler to difficulty in debugging and

maintenance.
Knowledge Integrating and reusing Developers rarely reuse knowledge
Integration knowledge from different models, within an architecture and never reuse

representations, and ontologies knowledge directly between
architectures.

Inplicit Semantics Knowledge depends on semantics Developers consistently
that are implicit in the misunderstand the structure and intent
representation. These semantics of knowledge during development and
should be made explicit wherever maintenance leading to errors and time
possible. consuming analysis of knowledge.

Goal Manipulation Managing goals and relationships Developers write code that manages
between goals in a way that the details of structuring and retrieving
abstracts the details of how the goals in a goal hierarchy. Most of this
goals and their relationships are code is tedious and orthogonal to the
stored and how goals are behavior of interest.
retrieved.

Perceptual Motor Managing and manipulating Each developer manages and
Interaction sensory/motor processes in a manipulates sensory motor

simple way, abstracting how these information in different ways making
processes are done within the systems difficult to reuse and
architecture, maintain.

Catalog of Micro-Patterns That Developers Typically Use

Retrieve v. Dual logic for either execution of Each situation is handled
Compute a process or retrieval of a independently. Depending on the

previously computed answer gets process and developer experience,
repeated with process-based different retrieve/compute strategies
variations. may be implemented within the same

behavior model.

13

Output command The pattern of creating output Sophisticated behavior code must be
structures & commands of one of a few types developed to manage the execution of
Proprioception and managing the feedback from motor commands. Many bugs are

the motor system as to its introduced because of subtleties in
progress. This is related to motor system interaction that are not
"Perceptual Motor Interaction" apparent to developers who have not
above, but speaks more of a worked with a particular type of
specific set of processes to environment. End result is often a
abstract. simplistic motor system that barely

achieves functional requirements.
List Management Managing collections of Many different implementations of the

information in either sequential or same list management processes. List
non-sequential form. management data gets tangled with

other knowledge structures as with
"process tagging" above.

Iteration Process a series of objects in Many different implementations of
some order while not losing iteration processes. Many "clever"
reactivity implementations seek to optimize

performance or the amount of code
required, but obscures the purpose of
the process.

Understanding The patterns of processes that are Complex logic to simulate universal
when a process commonly used to determine quantifiers is added or "aspect-like"
involving multiple when all of a collection of objects (in the aspect oriented programming
objects is complete have been processes in some way. sense) processes are used to monitor

progress and flag completion. In
either case the code can be difficult to
understand and maintain.

Table 1: Summary of catalog of common problems and solutions in behavior development.

We describe one pattern in detail here to illustrate our approach to using these patterns.

Consider the "process tagging" pattern. The process tagging pattern is a direct result of the

reactive nature of intelligent systems. In an intelligent system, at any given time the process that

is currently executing may be interrupted by some other process. Furthermore, processes are

often structured such that they apply reactively in a broad range of contexts rather than a few

narrow contexts. Because of these reactivity constraints, behavior model processes must store

knowledge about the current processing status in a location independent of the process, so it is

properly retained even if interrupted or started from a different context. The usual solution is to

14

augment knowledge structures with additional information about the processes execution on the

knowledge structure. Figure 1 shows the problems caused by process tagging, and how HLSR

can help solve these problems.

Tank P c Targetted Target Object

Location a ta 4!R !
Weapons assess object TankCrew , ••:

Targetted Location Fire
Assessed Weapons Transform

Damage Level Production Crew Get Approval
Threat Level If assessmnet don

Distance (" fa*i .ýse
Bearing A sesTre

Fired On Dist:::::
* Communicated

Automafti Tags Process State [F7 83as Object

Figure 1: Process tagging and how HLSR can help abstract the details.

In Figure 1 above ihe Tank object has three intrinsic properties: location, weapons, and

crew. However, when building processes that operate on the tank, the behavior developer begins

to augment this structure with threat information, targeting information, damage levels, and

relative location. Each of these pieces of information is important to the processes operating on

the tank, but they have three detrimental effects:

"* They clutter the tank definition with knowledge that is not intrinsic to the tank

structure itself. We say that the process data is tangled with the intrinsic data. This

makes understanding the tank object difficult for developers maintaining the system.

"* The management of these tags is tedious and error prone. Processes often include

common sense rules like "if not object assessed, then asses object." These types of

15

control logic are common across a large body of processes, and abstraction should be

possible.

Over time, as more processes are added and removed from the system, some of the

process tags are not removed, increasing clutter. It is often difficult to know exactly which tags

are no longer used.

HLSR provides solutions for these problems that at minimum reduce the detail

management and maintenance required to manage process tags. The approach is as follows:

e HLSR defines and refines the concept of tags. HLSR provides a memory

manipulation primitive called "tag." A tag is an object that extends what is known

about another object without breaking the structure intrinsic to the object being

tagged. For example, in Figure 1 the Target object contains process information that

is used by the Assess Target and Fire processes. Rather than augment the tank object

with this process information, an explicit tag is created with the process relevant

information and assigned to the tank using the special relationship "tagging." The

process-specific information is no longer tangled with the tank's intrinsic properties.

o HLSR defines two built in relations called "tagging" and "tagged." These

relationships are the inverse of each other. In Figure 1, the Target is information is

said to be "tagging" the Tank, while the Tank is said to be "tagged" by the Target.

HLSR provides built in keywords for testing for this relationship in rules and

developer defined processes.

o HLSR automates some of the most tedious and generic tagging. In particular, HLSR

provides constraints regarding process status. Because of these constraints, it is

always possible to know whether a process has completed or not. HLSR defines a

16

special tagging process that automatically tags each goal with any transforms that

have executed to achieve that goal. This alleviates the need to write the common

sense rules described earlier - the compiler writes them for you.

This is just one example of a common pattern and solution that HLSR facilitates for a

developer. Section 0 discusses how HLSR addresses the rest of the patterns described in the

catalog.

2.2.2 Development Principles for Behavior Modeling

One result of our research on development processes and developer requirements was a

set of development principles for intelligent systems. Each of these borrows to some extent from

traditional SE methodologies and principles; however, they each have different applications and

constraints specific to behavior modeling. These principles are important because they serve as

the fundamental underpinnings for the HLSR design and specification. Many HLSR constructs

and constraints are intended to specifically enforce or support one or more of these principles.

Furthermore, these lead to a more methodological behavior development process, which is

important for achieving more efficient behavior development across a wide range of developers

and applications. This is similar to the way structured programming and object-oriented

methodologies have improved traditional software engineering processes.

2.2.2.1 Least commitment to Dependencies

The principle of least commitment to dependencies states that process knowledge

should depend on exactly the knowledge that it requires to execute the process - no more and no

less. Though seemingly a simple and obvious principle, it is violated regularly in behavior

17

models. An example follows in Figure 2. Here the process "Plan Route" requires the amount of

fuel available in order to execute successfully.

On the left we see over commitment through excessive detail, where the "Plan Route"

process references each of the fuel tanks of the vehicle in order to calculate the total fuel

available. This is over commitment because the planning process now depends implicitly on the

number of fuel tanks in the vehicle. If an attempt is made to reuse this behavior in a vehicle with

only one fuel tank, the process will fail, and the reason for the failure may be difficult to

determine.

Routl F16BHamFe I Raoutee

How Mch •How MuchFuExtra Tank A - Fuel?HFuel9

thr'g ;•vercommlttedtralzloug ove Least commitmpen entito

Figure 2: Diagram showing different levels of commitment to knowledge structure.

In the middle we see over commitment through over generalization, where the "Plan

Route" process refers to the type of the vehicle (e.g. F16 aircraft) for which the fuel is being

calculated. This is over commitment because the planning process depends on the existence of a

whole class of information (that associated with F16) that is not relevant to the process itself.

Again, if an attempt is made to reuse the process for another vehicle, the process will fail.

On the right, we see least commitment to dependencies, where the "Plan Route" process

refers to exactly the information it requires for execution. It does this by referencing a

"18

procedural or callback interface that defines exactly the processes that are required for

execution. This process can be reused for other vehicle by simply instantiating the fuel

management interface properly for the new vehicle. While the other two examples could be

modified in a similar way, the modification for the least commitment example is well defined

and explicitly called out. This idea is not entirely new, and is implemented at some level or

another in traditional software systems for decades. However, current ISAs do not have

mechanisms to support ,these types of abstractions.

HLSR provides constructs that directly support the principle of least commitment to

dependency. These constructs include explicit declarative structure definitions which allow both

the developer and compiler to know the scope of declarative structures such as vehicle

descriptions, and procedural interfaces which provide direct support for the type of interface

described in the example above.

2.2.2.2 Encapsulation

The principle of encapsulation states that problems are decomposed into knowledge

units. These units hide the details of the solution, exposing well defined interfaces to other

knowledge units. This principle is the foundation of object-oriented programming, but is

difficult to translate to behavior models for the following reasons:

* ISAs encourage strong and often fluid interdependencies between knowledge to

ensure that an appropriate decision is made for each context.

e Behavior model knowledge frequently changes structure. This is especially true for

behavior models that learn.

These issues have led many behavior modelers to believe that encapsulation is

undesirable, or is unattainable. However, if encapsulation is not used, behavior models quickly

19

reach a level of complexity that cannot be managed by developers, just as procedural software

systems did before the advent of object oriented programming.

The desired result is to enable modular problem decomposition and detail hiding for the

developer, while retaining the flexibility required for intelligent behavior. HLSR seeks to

achieve this balance with the set of constructs defined below in Table 2.

Construct Encapsulates I Exposes

Declarative Knowledge Enc apsulation
Declarative Object Intrinsic relations (attributes) Initializer, developer defined relations

and interfaces
Goal Structure, met logic Met condition, developer defined

relations and interfaces.

Process Encapsulation

Manipulator Transform Logic Objects it manipulates (parameters)

Production Reactive process initialization Objects it manipulates (parameters)

Query Condition logic Objects it manipulates (parameters)

Mixed Process and Declarative Knowledge Encapsulation

Production Set Productions and related context Developer defined relations and
interfaces. Productions can react to
global memory changes.

Transform Local memory, transform logic Associated goal, developer defined
relations and interfaces.

Table 2: List of encapsulating constructs in HLSR.

HLSR's high-level constructs serve as the core encapsulation mechanisms in HLSR. It

provides both process and declarative knowledge encapsulation. These are related to object and

method encapsulation in object oriented systems, but differ as follows:

1. Transform constructs have declarative representations. This means that some of the

process specific state can be carried along with the process, and that processes can be

inspected for status by other processes - both important in intelligent systems.

20

2. Declarative knowledge structure is allowed to vary during execution. In traditional

object-oriented systems this would be equivalent to class modification during

execution. Furthermore the structure supplied by HLSR is treated as an execution

constraint, not a hard requirement. Knowledge that violates encapsulation is allowed,

but results in error conditions. For example, a behavior model can record that a tank

has legs, but this will result in the behavior model becoming aware of an

inconsistency between its standard model of a tank (with tracks) and its current

instance (with legs).

These two key differences with traditional object-oriented encapsulation help to alleviate

the first of the key problems with encapsulation in behavior models. That is, the fluidity of

structure and relationships. The second problem is partially alleviated by the fact that HLSR

does not require a specific structural representation of knowledge at the ISA level. That is, the

ISA can define any low-level structure appropriate for representing a higher level HLSR

construct. Because of this, the behavior model can learn new low level structures without being

required to map them back into HLSR. The remaining issue is to understand how to map back

learned knowledge into HLSR high-level structures. We have not yet resolved this issue as

discussed later in section 4.4.

2.2.2.3 Explicit Declaration of Intention

The principle of explicit declaration of intention states that knowledge semantics

designed by the developer should be explicitly encoded. That is, if a developer makes an

important design decision, that decision should be obvious and reflected in the encoded

knowledge.

21

In systems today, many relationships between processes and knowledge structures are left

implicit. This problem is captured in Appendix A under "Implicit Semantics." Figure 3 below

shows some of the advantages obtained by explicitly declaring intention.

,11 .O

What does the agent Help developer know Explicit invocation of
know about radios? about inconsistencies low level patterns

Proddtio Ioutput: MessageJ HLSR
Radio

If radidstatusl ONCln
"• -- frequn then o Output link Ouput LSnk

power Should be sPoWert.' Ri Error

Figure 3: Ways in which intention can be made explicit.

HLSR supports explicit declaration of intention in several ways. First, HLSR is a typed

language; that is, all declarative knowledge must have explicitly declared structure. While this

structure is modifiable at runtime, any modifications must also update the type information about

the structure being modified. Because of this both developers and executing behavior models

can quickly understand what types of things a behavior model knows about. Furthermore, the

compiler can help the developer by detecting errors in knowledge structure, which traditional

software engineers have been taking advantage of for many years. Second, HLSR provides

keywords to encode important and common relationships between procedures. Such

relationships include sequential dependencies, and iteration patterns. Third, HLSR provides

explicit, structured models for sensory motor interaction. By making these explicit and

constraining them, the compiler is able to encode many of the details that developers previously

encoded themselves.

22

To summarize, explicit declaration of intent improves developer understanding of the

code, thus reducing maintenance costs; improves error checking, thus reducing bugs; and,

enables the compiler to manage details by taking advantage of known semantics to fill in the

low-level elements of a explicitly declared process.

2.2.2.4 Abstract Low Level Details

The principle of the abstraction of low level details states that the amount of knowledge

that is not directly related solving the agent's domain tasks should be minimized. This principle

indicates that low level programming details like those captured in the Catalog of Low-level

Details HLSR Should Abstract, should be abstracted by a higher level representation. By

abstracting we mean that the higher level representation should not require those details to be

managed. Instead those details are managed by the architecture or the compiler.

Part of the solution for abstracting these details lies in our concept of "micro-theories for

compilation" as described in Section 3.2.5. The concept of these micro theories is to capture the

invariant aspects of these low level details and provide templates in the compiler for encoding

them. The variant aspects of these details (e.g. the parameters) are then exposed for developer

manipulation through HLSR or through compiler options. An example follows in Figure 4,

which shows how two low level details - tagging and complex logic - are abstracted in HLSR.

23

Auo ai tagn Simplifylogic fo 6 eaie

Production Tian~lolm Production Production
If notobject * Targetted Target Object If not target not If all targets
assessed Tank assessed assessed
then assoss Asesed1 thn eec coes, r elc coss
object Locatior . Assess Target tle
Production Weapons Tuomsta Production

If assessment Crew Approved Get Approval If not oroduction
done not close and
thentankis Fired On I • " : not direct-shot then fire weapon

assessed F " then fire weapon

Figure 4: Abstracting tagging and complex logic.

Tagging is discussed in section 2.2.1 and in the Catalog of Low-level Details HLSR

Should Abstract. Invariants of the tagging process include the structure of tags and their

relationship to the object being tagged, and common status tags used to track goal-driven

behavior (see 2.3.3.3). In Figure 4 we show that HLSR can standardize the structure and

relationships of tags (Targeted, Assessed, etc) with the tagged object (Tank). The HLSR

compiler can also generate code templates to perform common processes such as insuring that

the same process is not re-executed on an object. In general, HLSR defines a process for

automatically tagging goals with the transforms that attempt to achieve the goals, and it requires

goals and transforms to be tagged with status indicators such as executing, met, completed, and

suspended. Both of these tasks are managed by developers in Soar and ACT-R.

Complex logic is discussed in the Catalog of Low-level Details HLSR Should Abstract, as

well. Often ISAs implement the few logical operators required to achieve functional

completeness, with perhaps, one or two extras. The principles of logic define conversions and

mapping that can be used to generate the rest. However, conversion logic is much harder for

developers to interpret, and is fairly simple to generate with a compiler. Figure 4 shows the

example of universal quantifiers, which map to the logical statement "is S true for all X," and the

24

logical OR operators. The current HLSR specification does not support universal quantifiers

directly because of the difficulty of implementation in ACT-R (see Understanding when a

process involving multiple objects is complete in the Catalog ofMicro-Patterns That Developers

Typically Use). However, HLSR does support iterative loops to achieve the same result as

universal quantifiers with a more direct mapping to ACT-R. HLSR also supports more logical

operators, such as OR and exclusive-or (XOR), than either Soar or ACT-R does natively, which

improves code readability.

2.3 Research and Analyze Cognitive Architectures

The requirement to compile HLSR to both Soar and ACT-R representations, as well as

potentially other ISAs in the future, led us to do a comparative analysis of ISAs and how they

represent and manipulate knowledge. The result was a series of reports and a summary analysis

of the commonalities and differences among architectures 2. Of most interest to us were the

commonalities, as they form the foundations for HLSR primitives. Analysis of architecture

differences resulted in the principle of architecture discretion, discussed in 2.3.4.

ISAs share many similar structural components, and also process them similarly. We have

noted [23] that each structure in an ISA resides in one of three general states, which we refer to

as the CCRUstates (see 2.3.3.2). The possible states are latent (inactive and possibly not yet

existing), considered (decision required for activation), and activated (useful in current context).

This is the result of the context driven processes necessary for least commitment to an execution

path (see 2.3.3.1) and reactivity (see 2.3.3.4). In our summaries below we discuss how these

2 All reports will be included (as separate files) in the electronic submission of this document.

25

states map to each structure in ACT-R and Soar. Section 2.3.3.2 discusses these states from a

more abstract perspective, including the processes that change states.

2.3.1 Leveraging Cognitive Architectures

ISAs, and in particular cognitive architectures such as Soar and ACT-R, have important

computational differences when compared to other computational systems such as the Von

Neumann [2, 11, 30, 45]. These differences allow ISAs to execute behavior that is more

complex, more adaptive, and more appropriate for a rich set of contexts than the behaviors

produced by other computational systems. One goal of the HLSR design is to make explicit and

then leverage these capabilities. These capabilities must take a central place in the language and

not be abstracted away. In doing so, we ensure behaviors encoded in HLSR retain computational

mechanisms important for intelligence.

There are four primary features unique and important to ISAs: 1) support for flexible

autonomous behavior in complex, dynamic environments, 2) symbolic encoding of knowledge,

3) comparison and selection of alternatives via conflict resolution, and 4) pervasive and

continuous adaptation through learning. These are each discussed in more detail below.

2.3.1.1 Blended Reactivity and Goal Directed Behavior

ISAs support both reactive and goal directed behavior. To achieve reactivity, ISAs

support non linear control constructs such as productions, rapid context switching, and

parallelism. At the same time, they also provide constructs and processes to enable rational,

goal-oriented behavior. This balance is achieved in cognitive architectures with flexible goal

representations, least commitment to execution path (section 2.3.3.1), and serial decisions.

26

ISAs support reactivity through interrupt driven behavior. Context switching (i.e.,

changing the computational focus) is important in both Soar and ACT-R. Soar supports this

behavior with problem spaces and goal decomposition realized through the impasse mechanism.

However, abstracting away from Soar, generally architectures "name" contexts and associate sets

of knowledge with specific contexts. The ACT-R 5 buffer mechanisms support context

switching at the architectural level.

To provide behavior consistency, ISAs must constrain reactive behavior. A common

mechanism for this a decision making process. The decision process is used to direct behavior in

a consistent and goal-oriented manner. Soar supports an explicit "perceive-decide-act" cycle,

with "decide" corresponding to its most primitive deliberate act. All activities (e.g., knowledge

retrievals) can occur in parallel within a single PDA loop, but the sequence of PDA loops forms

a higher level serial structure. Similarly in ACT-R each module (e.g. declarative memory)

operates sequentially, with the added constraint that they can only communicate with each other

through constrained buffers (one chunk at a time) to the central production system. However, all

modules operate independently in parallel, and within each module the operations are best

understood as massively parallel (i.e. match all chunks or productions at the same time).

ISAs also include automatic processes for failure detection, and they integrate these

processes with reactivity and goal driven behavior. Soar's impasse mechanism is a general

failure detection process. Failure detection processes should enable improved robustness/more

graceful degradation when facing novel situations because the system receives an explicit signal

regarding the failure. Penetrability of the reasoning process including its symbolic structures (as

described in 2.3.1.2) may also be important for robustness. Such penetrability is often referred to

as meta-cognition. In practice, ISA support for meta cognition is relatively weak. To be

27

effective, the developer must provide additional knowledge structures to track the details of

reasoning in order for robustness and graceful degradation of behavior to be achieved [5, 31].

2.3.1.2 Symbolic Encoding of Knowledge with Associative Retrieval

ISAs provide mechanisms for encoding symbolic representations of knowledge.

Symbolic structures supported by Soar and/or ACT-R include: productions, goals, operators,

chunks/WMEs, and preferences. ACT-R makes a distinction between symbolic, declarative

knowledge (chunks) and procedural knowledge (productions). Soar does not make this

distinction, as all long-term knowledge in Soar is represqnted as productions.

Knowledge can be either penetrable (i.e. inspectable from other knowledge) or

impenetrable (i.e. not inspectable from other knowledge). In Soar, only declarative memory is

fully penetrable. A subset of symbolic preferences is also penetrable. Similarly, in ACT-R only

chunks are penetrable. However, penetrability is orthogonal to the symbolic/sub-symbolic

distinctions. A symbolic structure can be impenetrable (productions in Soar and ACT-R) and

sub-symbolic values (like activation) could be penetrable.

Retrieval of knowledge is strongly associative in ISAs. Associations can be explicitly

represented in the architecture implementation (e.g. Rete algorithm production match [15]) or

implicit (e.g. learned co-occurrences). Associative retrieval enables reactivity as it allows the

existence of a pattern in memory to directly trigger a behavior..

2.3.1.3 Comparison and Selection of Alternatives via Conflict Resolution

ISAs provide built-in mechanisms for weighing and choosing amorng alternatives.

Alternatives to be weighed include the desired goal(s) (section 2.3.2.1), the action(s) that should

be taken (section 2.3.2.3), and what should be believed given prior and current observations

28

(section 2.3.2.2). Conflicts typically arise because each architecture imposes specific constraints

on representation. The form of this constraint is often a single "slot" or storage location. For

example, Soar provides only a single operator slot in each state; therefore, a conflict resolution

process must select between alternative operators to determine which gets to reside in that slot.

A conflict resolution procedure can be fixed or knowledge-mediated (deliberate). A fixed

procedure simply activates some selection algorithm and can be executed immediately, without

further reference to the context. A knowledge-mediated process relies on further knowledge to

resolve the conflict and is thus very sensitive to the context. In general, beliefs are mediated by

non-deliberate processes and goals by deliberate ones. Soar and ACT-R differ with respect to

memory transformation. Soar operators require symbolic preference knowledge for selection

while ACT-R productions rely on sub-symbolic processes for selection.

To aid with the conflict resolution process, ISAs contain structures that represent the

relative or absolute weight of particular choices. We refer to these structures as preferences.

Preference knowledge can be symbolic (as in Soar's operator evaluation rules) or sub-symbolic

(as in ACT-R's production utilities). Preferences influence which alternatives are selected.

2.3.1.4 Pervasive, Continuous Adaptation through Learning

ISAs, and in particular cognitive architectures such as Soar and ACT-R, provide learning

mechanisms that can tune and extend agent knowledge. ISAs provide mechanisms that control

when learning occurs, what form learned knowledge takes, and when learned knowledge is

applied.

Learning has often been a roadblock to development of higher level representations [51].

The primary difficulty imposed by learning is the inability to associate learned knowledge to the

higher-level representation. We discuss this issue at length in section 4.1.3.

29

2.3.2Common Structures in Intelligent Systems

ISAs share many structural elements among them, although the literature for each ISA

uses its own terminology, so the similarities are often not obvious on the surface. Our analysis

abstracts away from terminological differences and exposes similarities at different levels of

details and with different parameters for each ISA. We find that many common structural

elements have primary structural and functional purposes that are closely related. Here we

discuss the most important of these structures for intelligent behavior and, specifically, the

structures from which we defined the HLSR primitive structures.

2.3.2.1 Goals

A goal describes a desired state or outcome. For example, a goal may be "send a

message" or "the target is destroyed." Though the term "goal" is used in different ways in

ISA's, functionally it retains the same core purpose. It serves both to provide an objective that

reasoning will attempt to achieve, and as a context for narrowing reasoning to the most relevant

and important activities. An activated goal is sometimes referred to as an intention3 in the

literature, and represents a current objective.

In ACT-R, goals have an explicit declarative representation. ACT-R supports a latent (or

uninstantiated) representation of goal in the form of goal chunk definitions that define the classes

of goal an ACT-R model can have. A goal is considered when a production that creates that goal

is activated by ACT-R's sub-symbolic production matching process. A goal is committed or

3 However, the literature includes several definitions of intention, including an active goal, a selected plan, or a step

in a plan. Our definition is equivalent to active goal.

30

"activated" when it is instantiated and placed in the goal buffer. An activated goal serves as the

focal point for production firings; that is, most productions test the current goal as part of their

firing conditions. A goal is returned to the considered state by the sub-symbolic production

matching system any time a production that would replace the current goal is a candidate for

firing. Once a goal is achieved, or some other goal needs to be processed, the goal is removed

from the goal buffer and stored in long term declarative memory where it resides in a latent state.

Current versions of Soar define do not define an explicit declarative representation of a

goal. However, goals play an important part in any Soar behavior model. Because Soar does not

provide an explicit goal representation, the developer is free to design their own representation.

Two representations have become common among Soar developers. The first is oriented toward

a built-in stack structure within the Soar architecture, which pushes and pops problem-solving

context placeholders in response to reasoning impasses [25]. Developers may use this stack of

reasoning contexts to represent a hierarchy of goals and subgoals. In this particular

representation, each goal is created without an initial latent state, instead being generated

automatically in the active state when needed. However, the information regarding the goal,

such as its name and relevant knowledge structure, is latent in Soar productions, which are

Soar's only form of long-term memory. Using this approach, the architecture automatically

activates new goals in response to reasoning impasses (the system does not have the knowledge

to select a unique discrete action for its next reasoning step). An automatically activated goal

becomes a sub-goal, which is used as a new context in which operators are proposed to perform

internal or external actions. Automatic sub-goals may be returned to the considered state on a

decision by decision basis, based on whether the impasse that caused the goal has been resolved.

31

If the impasse becomes resolved, the sub-goal is popped from the stack and becomes latent

again. No record of this instantiation of the goal is kept in memory for the future.

The other common approach within Soar is to represent goals using the same

representation language as all the other features describing a reasoning context. In this case,

instead of relying on architectural goal-activation and representation, the developer creates user

defined goal structures, similar to those created in ACT-R, and manages their relationships

through Soar productions. There are many different approaches to managing these goals, and

the goal state (latent, active, etc.) is defined and controlled by productions, as it is with beliefs

(see 2.3.2.2).

In addition to the CCRU states, goals can typically also be marked as achieved. A goal is

achieved when the objective defined by the goal is met. In most cases, a goal that is achieved is

reconsidered and then moved back into the latent state. However, this does not always have to

be the case. There is typically one or more logical condition that defines whether a goal is

achieved. Sometimes the condition is as simple as a tag indicating that the goal has been

completed, other times it is more complex. In both Soar and ACT-R these conditions are

encoded in productions.

2.3.2.2 Beliefs

A belief represents either a perceived or inferred relationship among objects. These

objects could be concrete as in the case of real-world objects like tanks and planes, or could be

abstract as in the case of concepts such as "danger" or "action". An activated belief is said to be

believed by the behavior model. Modification of beliefs is the primary result of ISA decision

processes. Most behavior model processing is concerned with maintaining a useful and relevant

set of beliefs.

32

In ACT-R, beliefs have an explicit declarative representation in the form of chunks. Each

chunk is associated with a chunk-type, indicating the structure of the belief. Beliefs describe

relationships between objects, and ACT-R supports this through labeled links to other chunks,

and thus chunks can represent any arbitrary set of relationships. Latent beliefs are partially

defined by chunk-type definitions and are instantiated by productions. The ACT-R

representation of a considered belief is less clear and explicit. Beliefs are instantiated in buffers

before being moved to long term memory. Furthermore, they are associated with sub-symbolic

activation levels, which help determine whether they will be retrieved. A belief can be thought

of as activated when it resides in long-term declarative memory and has sufficient activation to

be retrieved for some purpose. A belief returns to the latent state when its activation is no longer

sufficient for retrieval or when other conflicting beliefs are retrieved in its stead.

In Soar, beliefs are represented as collections of related working memory elements

(WMEs), each of which is a triplet defining a symbol, a relation, and another symbol or value.

Sets of WMEs form a graph structure that can, just as ACT-R chunks can, represent any arbitrary

set of relationships. Latent beliefs are sometimes implicitly encoded in productions called

"elaborations." Considered beliefs take the form of a preference to believe. Activated beliefs

are instantiated in working memory. Soar does not have a long-term declarative memory, so

there is no built-in representation for what was believed; that is, latent beliefs that were once

activated.

2.3.2.3 Transforms

A transform represents an action to be carried out in an attempt to achieve one or more

goals. Not every ISA has an explicit representation for a transform, but they always provide

33

some functional equivalent. An activated transform executes, generally by either changing the

belief set or initiating some motor action.

ACT-R does not have an explicit representation for transforms. Instead, it has a set of

loosely coupled productions that fire sequentially to achieve a goal. Because of this it is not

possible to directly assign a CCRU states to transforms in ACT-R. However, if a single

production is treated as a mini-transform, a mapping can be made. A latent transform in ACT-R

then maps to a production in long-term declarative memory that is not currently activated. A

considered transform is an activated production that the sub-symbolic production selection

process is considering for selection. An activated transform is a production that is firing. For

larger-scale collections of productions, ACT-R considers them on a production by production

basis.

Soar explicitly defines an operator construct that directly implements the concept of a

transform. The decision process in Soar is organized around proposing and selecting operators

for application. A latent transform then exists in the form of a production that proposes an

operator. A considered operator is an operator that has been proposed but not selected. An

activated operator is one that has been selected for application. After application an operator is

automatically reconsidered and typically is removed from memory, thus it is not retained in an

explicit latent state.

In addition to the CCRU states, transforms are associated with additional states related to

execution. Often, behavior models track these states in order to appropriately sequence behavior.

We summarize these states as follows:

"* waiting: activated but not yet executing

"* executing: activated and executing any transformations it defines

34

* succeeded: completed and successfully executed all intended transformations

9 failed: completed but without executing all intended transformations

* suspended: started executing but stopped because of interruption

The Soar and ACT-R architectures provide some built-in mechanisms for detecting these

states, but those related to success and failure must typically be defined by developers when they

are required for a particular behavior.

2.3.2.4 Preferences

A preference represents a choice or a hint regarding a decision. Decisions change the

state of object from considered to either latent or activated. While decisions within ISAs are

always made by a built in decision process, often preferences influence decisions in the direction

that best supports any active goals. An activated preference is one that applies, that is, it is being

used to help make the decision

In ACT-R, the built-in preference mechanism is sub-symbolic. That is, preferences are

not present in declarative memory, but instead are numeric and managed by the architecture and

by statistical parameters such as base-level activation, production costs, and probabilities of

success and failure. Latent preferences are elements of the sub-symbolic values that are not

currently being used for the selection process. There is no explicit representation of considered

preferences, as sub-symbolic preferences are either used or not used based on a fixed process.

However, activated preferences are used in activation calculations for selecting memory

elements or productions.

Soar has a strongly knowledge-driven decision process and thus includes an explicit

preference construct; however, it has been constrained in the current version of Soar to apply

mainly to operators. Preferences for beliefs are allowed, but play a limited role in decision

35

making. Latent preferences exist as elements of productions, just like all long-term memory

artifacts in Soar. Considered preferences exist internally within the architecture and are not

available for inspection. Soar defines a preference hierarchy and conflict resolution process that

determines which preferences are activated. An activated preference influences the activation

of an operator, belief, or developer-defined goal.

2.3.3Common Processes in Intelligent Systems

In addition to the structures described above, ISAs share common processes that serve as

the basis for intelligent behavior. We summarize these processes below and discuss their impact

on HLSR's design.

2.3.3.1 The Decision Process and Least Commitment to Execution Path

ISAs conform to the principle of least commitment to execution path; that is, they

delay decisions until the last moment when it is necessary to make the decision. This is in sharp

contrast to traditional software systems where a large number of decisions are made prior to

compilation of the program, and decisions that are left to runtime are highly constrained by

traditional control logic.

Traditional Least

FControl Logic Commitment

Figure 5: Least commitment contrasted with traditional control logic.

36

To support this principle, each ISA defines a decision process. The decision process runs

continuously and attempts to bring the most relevant knowledge to bear on each decision step.

This decision process is diagrammed at an abstract level in Figure 5. The decision cycle is

sometimes also referred to as the "decide-act" cycle because it involves the selection from a set

of alternative actions and then carrying out the selected actions.

HLSR supports the ISA's decision process and least commitment to execution path in the

following ways:

"* HLSR does not provide fixed sequential control logic.

"* HLSR does not provide a decision mechanism, that is, no code written in HLSR can

force a particular action. HLSR code only provides hints and preferences.

"* HLSR does not allow transforms to invoke other transforms; that is, no process can

begin execution without a decision being made first.

These constraints and design decisions enable the compiler to leverage the unique

decision capabilities of the underlying ISA as discussed in 2.3.1.

2.3.3.2 CCRU

Each ISA representational structure can be described as existing in one of three states:

latent, considered, and activated. This abstraction can be extended further to include the

transformations that change the state of an ISA structure. These transformations are as follows:

* Consider: Changes the state of a structure from latent to considered. Can be thought

of as the process of initially bringing a structure up for conflict analysis.

9 Commit: Changes the state of a structure from considered to activated. Can be

thought of as the process of making a decision among a set of possibly conflicting

options during conflict analysis.

37

"* Reconsider: Changes the state of a structure from committed to considered. Can be

thought of as the process of re-evaluating a structure to see if it still is appropriate for

the current context.

"* Unconsider: Changes the state of a structure from considered to latent. Can be

thought of as the rejection of a structure for the current context.

These processes, referred to as the CCRU processes, are abstractions of the sub-processes

involved in decision making; therefore, they directly support the principle of least commitment

to execution path discussed in 2.3.3.1. Figure 6 shows the CCRU processes and how they relate

to the CCRU states.

Reconsider

L Consider Commit

Unconsider

Latent' Activated

®Considered
Figure 6: Consideration, Commitment, Reconsideration, Unconsideration and the three CCRU states.

The CCRU processes have been abstracted and formed into primitive memory operations

in HLSR. CCRU processes are good candidates for such primitives because they map well to the

key principles of intelligent behavior and because they are reflected in the underlying ISA.

Because HLSR is at a higher level than ISAs, the CCRU states and processes in HLSR apply

only at the symbolic level. However, these processes map during compilation to one or more

38

CCRU processes and states in the underlying architecture. Section 2.5.2 provides more details

on these primitive HLSR operations.

2.3.3.3 Goal Driven Behavior

All ISAs exhibit goal driven behavior. Goal driven behavior is the mechanism by which

ISA's balance reactivity and least commitment to execution path with behavior consistency. In

HLSR, goal driven behavior is implemented as a high-level combination of CCRU processes.

The core constructs are goals (see 2.3.2.1) and transforms (see 0). Figure 7 shows how goals

and transforms interact to form goal driven behavior.

Goals, comitted goal(s) shaded

in current context memory (boxc)Folw e+
Eom m tte i t' C o m m i t mePoit

Tasform(s) 1
Execution

stat

- t ~Adternativs not ~*]j
7 Executed .. 0..

Figure 7: Goal driven behavior.

The behavior pattern consists of four steps as follows:

1. Consider one or more goals

2. Commit to some subset (possibly all) of the considered goals (activate them)

3. Consider one or more transforms to achieve the activated goals

4. Commit to one or more transforms to achieve the activated goals

39

This process repeats to form a goal-directed decision process. Architectures vary in how

they constrain this process. In Soar, only one transform may be activated at any one time. In

ACT-R, only one goal may be activated at one time. In Soar, using the stack structure for goals,

a stack of goals and transforms may be active at one time; however, dependencies between the

goals and transforms in the stack usually lead to only one transform actually executing at one

time. These constraints reflect the two architectures' emphases on psychological plausibility.

Architectures with a more functional emphasis sometimes allow multiple simultaneous active

goals and transforms in arbitrary configurations.

Goal driven behavior narrows the context for decision making. This is critically

important for knowledge rich systems and differentiates ISA-based models from stimulus

response-based models. Only transforms that apply to activated goals are available for

consideration, thus achieving a narrowing of focus that allows a behavior model to execute

complex tasks that involve significant reasoning.

Goal driven behavior serves as the core high-level process within HLSR. It is around this

process that HLSR programs are organized. HLSR does not define the details of the process

(e.g. such as sequential v. parallel goals), but does provide constructs and constraints that

emphasize and maintain the characteristics of goal driven behavior. These constructs include

goals and transforms discussed in section 2.5.1.2. The constraints are as follows:

1. Only goals and transforms can be reactively considered. This constraint is reflected

in ISAs and helps balance reactivity and behavior consistency by requiring that all

significant context changes go through the goal driven behavior process.

2. Transforms cannot be considered without the context of an activated goal.

3. A transform instance can only be considered for a single goal.

40

These constraints provide a framework within which intelligent behavior can be encoded.

This framework implies that to execute a behavior, the four steps above should be followed. A

goal should be created that represents the desired outcome of the process. One or more

transforms should be constructed that help achieve the goal. In addition, preferences should be

specified to guide the decision making process. These constraints form the primary execution

model for intelligent behavior much like the fetch-execute cycle and sub-routine calls form the

foundations for traditional software execution.

2.3.3.4 Reactive Consideration

ISAs combine goal driven behavior with reactivity. All ISAs have built in mechanisms

for reactive consideration. By reactive we mean that the consideration is the result of some

internal or external stimulus rather than a purely algorithmic process.

A critical feature of ISAs is that they allow very few reactive commitments.

Commitments should be made after conflict resolution, not before. This constraint is required in

order to meet the principle of least commitment to execution path. If reactive commitments are

allowed, behavior is essentially hard-coded, not taking into account the broader context, and

inappropriate decisions might be made in the following ways:

1. Behavior can be wrong for the given context

2. Behavior can be inconsistent and poorly focused

As discussed in section 0, goal driven behavior processes are employed to alleviate these

problems. Given these constraints, ISAs tend to define two paths to reactive consideration, with

a third path being a pseudo-reactive path. First, most ISA's allow the definition of patterns,

usually in the form of rules, that consider some construct when they match. Second, ISA's

almost always allow external events to be injected into the behavior model through some sensory

41

system. Third, the architecture may have internal mechanisms that bring up constructs for

consideration as a side effect of processing. An example is ACT-R's spreading activation, which

can retrieve elements for processing that were not specifically requested. We refer to this third

path as a "pseudo-reactive" path because it is a mixed result of deliberate processing (e.g., a

retrieval request) and architecture driven stimulus (e.g., spreading activation).

ACT-R support all three of these mechanisms, however, the first mechanism is used more

rarely in Soar. That is, ACT-R models tend to be more goal driven than Soar models in general.

Soar supports the first two, with the additional ability to create reactive commitments to beliefs.

However, this practice is considered to be poor programming practice in most cases.

Activator

(cnie)Consideration Committed Pool

o jectnldr Commitment()C)C
~k- 0 '° ©O

Figur 8: eactie cosideationof mmorynonstucts

"ec are trerminator n tonsier
oetiveba te (rnco(sidere S mon: :+Unc~onsideratlon ..

Figure 8: Reactive consideration of memory constructs.

HLSR provides primitive constructs to enable reactive consideration (Figure 8) at the

symbolic level. These constructs are activators and terminators, and they consider and

reconsider objects respectively based on a pattern (see Section 2.5.1.1). An important constraint

is that both activators and terminators can only consider or reconsider goals and transforms.

Beliefs can only be considered based on deliberation; that is, by transforms within the goal

driven process. This constraint is based on the ISA constraints discussed above and helps

prevent the two behavior issues discussed above.

42

2.3.4The Principle of Architecture Discretion

To this point, we have primarily discussed the common themes in ISAs. At a conceptual

level and, to some extent a design level, ISAs appear very similar. This is moderately surprising

given the fundamental implementation and functional differences of these architectures. The

challenge of HLSR is to take the unifying concepts between ISAs and somehow map them to

significantly different implementation constructs and constraints, while retaining sufficient

developer control to make the make the engineering task tractable.

The mechanism by which HLSR makes this mapping possible is the principle of

architecture discretion. The principle of architecture discretion says "if a construct or

constraint is not defined at the HLSR level, then it is up to the architecture and/or compiler to

define it." That is, the architecture is given significant discretion as to how to execute HLSR

knowledge. Figure 9 shows how architecture discretion affects the relationship between HLSR

and ISAs.

Areas of Architecture Discretion

ZoAn ACT-R
Execuo Execution

Specification Specification

Exercising Archi :tre Discretion Exercising Architecure Discretion

Figure 9: Exercising architecture discretion.

43

HLSR provides a set of constructs and constraints that partially specify behavior. Within

this framework, the compiler and architecture is given discretion to define constructs,

constraints, and processes specific to that architecture. We call these constructs, constraints, and

processes not defined by HLSR areas of discretion. The example shows two such areas of

discretion: memory retrieval process and learning process. The orange and green figures show

how these areas would likely be implemented in Soar and ACT-R respectively.

Table 3 describes the specific areas of discretion defined by HLSR. It is apparent that

this list includes a significant number of critical constructs, constraints, and processes for

behavior execution. The result is that HLSR code by itself is not sufficient for execution.

Because of this, we say HLSR is a constraint language rather than a programming language.

That is, HLSR defines constraints within which the compiler and architecture produce behavior

appropriate for a particular architecture.

Area of Discretion Description

Memory structure The number and form of memory partitions (e.g. long-term v. short-term
memory), the primitive structures used to store individual elements, the
size of any memory partition or memory element, and the size and form
of any primitive data structures (e.g. strings, or numbers)

Object structure The size, format and layout of HLSR objects in architecture memory.

Retrieval process The process used to retrieve HLSR objects and relations from memory
including whether and when retrievalfailures and partial retrievals
occur.

Retrieval strategy When retrieval is attempted, what elements are retrieved, and the order in
which elements are retrieved.

Default The process used to commit/unconsider objects when insufficient HLSR
commit/unconsider knowledge is available to guide the commitment process.
process
Decision Process The process constraining knowledge execution. This includes but is not

limited to decision cycles, constraints on parallel execution, and
architecture-specific mechanisms for resolving conflicts.-

Error handling The process for identifying failure conditions and processing the failure
process information, including construction of HLSR failure objects.

44

Learning process The architecture-specific learning process(es) and the form of
architecture-specific learned knowledge.

Sensory System The structure of the sensory system, the underlying data structure of
sensory data, the timing and synchronization of sensory information with
the external world.

Motor System The structure of the motor system, the underlying format of motor
system commands, the procedure executed by a motor command, the
timing and synchronization of the motor system with the external world.

Table 3: List of areas of architecture discretion.

To be executable, HLSR requires a combination of HLSR knowledge and

compiler/architecture defined constructs, constraints, and processes defining the areas of

architecture discretion. These compiler/architecture defined constructs, constraints, and

processes together form an execution specification. HLSR knowledge can be executed given an

execution specification. HLSR provides very few constraints on how the execution specification

defines the areas of discretion; therefore, it is possible, and even likely, for multiple execution

specifications to be defined for a single ISA.

45

The impact of architecture discretion is that the behavior of HLSR models will vary

based on the ISA and even the compiler. Specifically, the same HLSR model will not produce

the same behavior when executed on two different ISAs or compiled with two different

compilers for the same ISA. To see how behavior may vary, we present Figure 10.

Start more involved
HLSR Production Retrieval Error Failed Recall process

Production Production Production Production
r If target exists If target exists If target exists If target exists

then associate with then associ3te with then associate with then associate with
targets-to-assess tageis-to-assess targets-to-assess target[-to-aswss

TgeW~o ~ 9-U-6 6a'est~sesTresoaas Goat to remrernber
and associ targets

Figure 10: Example of how behavior can differ given different ISAs and compilers.

In Figure 10 we show a single production in HLSR (represented abstractly for

compactness). It does a conceptually simple process; it links all targets in memory to a structure

representing the group of targets called "targets-to-assess." In English, it says "I want to think

about all targets collectively as a group." To the right of the vertical dividing line, we see three

different ways of executing this production in an ISA. In the column labeled "Retrieval Error"

the architecture retrieved the wrong object (an object that is not a target) and associated it with

targets. In the column labeled "Failed Recall" the architecture fails to retrieve one of the targets

from memory, and thus cannot associate it with the group "targets-to-asses." In the column

labeled "Start More Involved Process" the architecture does not associate all targets in one step;

rather, it creates a goal to associate the targets in multiple steps. Clearly the end behavior is

different for each of the execution processes. What is invariant is the constraints provided by the

46

HLSR production; in all instances the architecture attempted to execute the reactive association

of targets to "targets-to-asses."

In addition to allowing HLSR to map successfully to different ISA's, architecture

discretion allows us to achieve two related goals. First, it provides the compiler with enough

flexibility to leverage the underlying architecture; that is, take advantage of the special

capabilities implemented within a particular ISA. Second, it enables HLSR behaviors to execute

with the unique characteristics or "feel" of the underlying architecture. The cost, of course, is

behavior predictability between ISAs and compilers as discussed above.

2.4 HLSR Requirements

Analysis of the requirements of developers and underlying ISAs leads to the definition of

the core requirements for HLSR. We have defined six core requirements for HLSR to guide the

analysis and design process. Our initial efforts focus primarily on making HLSR general enough

to generalize concepts shared by Soar and ACT-R. We anticipate that future work on HLSR

will include the core concepts from additional architectures, and thus the requirements will be

generalized appropriately. The HLSR core requirements are as follows:

1. HLSR must be independent of the target implementation architectures.

HLSR must not depend on the existence of particular individual architectural

capabilities and structures that are not generally shared by other architecture.

2. HLSR must be a high-level language, similar to high-level programming

languages. That is, an HLSR developer must not be required to code any low-

level knowledge to produce an executable model. Our current working definition

of "low-level" includes constructs that could clearly be implemented in alternate

ways (by different underlying architectures); as well as constructs that do not

47

immediately provide a knowledge-level understanding of the model's behavior.

Forcing HLSR to be a high-level languages is intended to make producing a

behavior more efficient (more time spent on the desired behavior and less on

details) while at the same time making the models in HLSR more maintainable.

3. HLSR must make it both possible and convenient to package knowledge into

knowledge components. A component-oriented approach should allow developers

to construct libraries of reusable behavior components, and definite

implementation-independent interfaces for those components.

4. HLSR must guide and make it easy for the developer to take advantage of

the specific features of cognitive architectures. It is not sufficient merely to

provide a high-level computational programming language for knowledge-

intensive agents. Rather, it is necessary to include those components and

processes that have been identified in the research on cognitive architectures as

being critical for intelligent and autonomous behavior.

5. HLSR must support incremental addition of knowledge efficiently and

robustly. Model developers must be enabled to improve the knowledge-base of

particular behavior models over time, without having to refactor significant

portions of the initial knowledge base. Incremental addition f knowledge should

also facilitate automated agent learning.

6. HLSR must be complete and transparent. HLSR must be expressive enough

that HLSR models can be compiled and executed on each supported architecture

without the need for additional architecture-specific code

48

These core requirements can be organized into three categories related to the developer,

reuse, and architecture, as shown in Figure 11.

End-User Affordable

Configurable

Composable

Programmable
f-7 High-Level Packaging

Under- Developer *Reusestandable"" / •-

Complete & Incremental Maintainable

Robust Leverage Architecture

Capable Archtecture Independence l eS.... N•• /.Deployabl

Architecture
"Flexible

Adaptable
Autonomous

Figure 11: HLSR requirements compete.

The outside ring of blue represents customer requirements, or requirements of

applications that use behavior models. These customer requirements roughly map to the

functional requirements closest to them in the requirements pie.

Organizing the requirements this way clearly shows HLSR is pulled in six distinct

directions, as all six requirements compete with each other. For example, leveraging cognitive

architectures (requirement 4) necessarily involves drawing the developer's attention away from

high-level behavior and toward architecture details. Furthermore, it leads to highly complex and

unmaintainable interdependencies between knowledge. These interdependencies are necessary

for context driven behavior. Thus, leveraging the architecture competes with reuse requirements.

Even within the architecture slice, leveraging the architecture competes with architecture

49

independence in that maximally leveraging an architecture requires intimate knowledge and

control of the architectures features.

This competition means that HLSR cannot possibly fulfill any of the requirements

completely. Rather, our approach in HLSR is to balance the core requirements, as shown in

Figure 12, thus creating a language that will be useful in general for intelligent system

implementation.
Developer Reuse

Higl-Leve- Pnkag

Figure 12: Balancing the requirements of HiLSR. The colored lines indicate the extent to which HILSR should
meet each requirement.

This goal to balance the requirements separates HLSR from many of the other attempts to

provide tools for developing intelligent systems. For example, approaches that are based on

traditional object-oriented techniques strongly concentrate on decomposition and reuse concerns,

but have left the details of implementing high-level constructs and intelligent behavior processes

to the developer. Other systems [51] have focused on making the specification of intelligent

behavior higher-level and easier, but sacrifice the developer control necessary to generalize

solutions to other problems and domains. Cognitive architectures and their associated languages

50

have provided very powerful core capabilities for intelligent behavior, at the cost of increasing

the complexity and interdependencies among behavior components.

2.5 Formal HLSR Specification

HLSR is described in Specification of a High Level Symbolic Representation (HLSR) for

Intelligent Systems. This specification includes a detailed description of every HLSR construct

and constraint as well as a language grammar. Here we summarize the HLSR specification and

point out important processes and constructs. Emphasis here is placed on the reasoning that led

to each construct and constraint.

2.5.1 Core Primitive Constructs

The HLSR specification is primarily a definition of HLSR's primitive constructs.

Because HLSR is a high-level representation, these constructs are necessarily more abstract and

constrained than the primitives of the low-level ISAs. However, some primitives have fairly

direct relationships with primitives in the underlying architecture.

It is important for HLSR to define constructs that bridge the gap between behavior design

and implementation on an ISA. This means that HLSR needs to include both constructs that map

well both to design artifacts and constructs that map well to ISA primitives, thus allowing

behavior models to be modified at the appropriate level of granularity.

51

'. Expert/User' eeoe Architecture

fDoctrine • Produtction Sets, Fi Dtc,- RHS function's

Figure 13: HLSR bridges gap between design and architecture.

Figure 13 shows how HLSR bridges the gap between design and ISA. On the left are

constructs interesting to an expert or user. There is an overlap of some of these constructs with

engineering design constructs to aid an engineer in encoding a solution to the expert/user's

problem. Other design constructs are only useful to the developer. These are shown in the

middle of the white oval. Typically these constructs are those that help an engineer structure and

maintain a behavior model, such as interfaces and encapsulation mechanisms. Finally, there are

constructs relevant to architecture designs that are used for managing execution. These

constructs overlap with the constructs that developers require in areas where the developer needs

to control architecture processes. This division is not perfect. Clearly some constructs, such as

goals, are important across all levels. However, HLSR versions of these constructs are more

abstract and highly structured than the architectural counterparts, and thus map better to design

constructs than to ISA primitives.

Table 4 lists all of the major constructs defined in the HLSR specification. They are sub-

divided into categories based on their primary use within a behavior model. Each construct has a

form (middle column), which is used to express and encapsulate that construct in HLSR.

52

Construct _T Form Responsibility

Reactivity
Activator Production (rule) Reactive consideration of goals and

transforms

Elaboration Production (rule) Reactive association of beliefs with an
activated transform

Terminator Production (rule) Reactive reconsideration of goals and
transforms

Goal Driven Behavior

Goal Object w. knowledge about Explicitly represent of a desired state
achievement or objective

Preference Production (rule) Context based hints/choice
Transform Object w. execution body Manipulate beliefs and initiate

external commands.

Encapsulation and Packaging
Object Object Represents belief in memory
Interface Collection of queries and Decouple objects and procedures

manipulators

Manipulator Named transform fragment Encapsulate related belief
manipulations in a reusable construct.

Production Set Object w. productions Shared context for productions

Query Named LHS condition Encapsulate memory pattern in a
reusable construct

Table 4: HLSR primitive constructs.

The subsections below discuss briefly each of these constructs by category. Further

details are available in Specification of a High Level Symbolic Representation (HLSR) for

Intelligent Systems.

2.5.1.1 Constructs for Reactivity

HLSR provides two constructs for symbol-based reactivity. By "symbol-based" we mean

that these constructs specify patterns of symbols that define the reaction context (i.e. the pattern

that triggers the reaction). Traditionally such constructs take the form of productions (or rules,

53

i.e. if X then Y) and this is also the case in HLSR. However, HLSR productions are constrained

considerably more than production in other production-based systems.

HLSR provides three structures for reactive consideration, each with slightly different

constraints. First, an activator is a production rule that can consider (section 2.3.3.2) one and

only one goal or transform for activation. Second, a terminator is a production rule that can

reconsider (section 2.3.3.2) one and only one activated goal or transform. Third, an elaboration

is a production rule that can consider (or reconsider) one and only one belief for association with

a transform's local memory (see 2.5.1.2). Activators and terminators allow engineers to specify

conditions for behavior changes based on symbolic patterns that are sensed by the behavior

model. Elaborations serve a more developer-oriented role by providing a mechanism for

conveniently associating the proper memory elements with a transform, much like parameter

lists do for functions in traditional software systems.

HLSR further constrains its productions by limiting what can appear in the production's

memory pattern. Nested patterns (patterns within patterns) and universal quantifiers are

currently not allowed. The functional capabilities these provide can be realized through queries

(section 2.5.1.3) and iterative loops (Specification of a High Level Symbolic Representation

(HLSR) for Intelligent Systems) respectively.

The reason for these constraints is mainly to make behavior models more maintainable

and understandable. In doing so, these constraints also help prevent over commitment through

excessive detail (see 2.2.2.1), and by forcing details to be specified in modular units (queries, see

2.5.1.3). Patterns that contain complex logic, like that prohibited by HLSR, are difficult to

design and understand. Experienced knowledge engineers know that it is often better to break a

54

complex rule into several smaller, more modular rules. HLSR makes this a requirement and

provides explicit support for this process.

2.5.1.2 Constructs for Goal Driven Behavior

As discussed in earlier sections, HLSR provides direct support for goal driven behavior.

This support includes three constructs together with constraints on how those constructs are

processed.

The first construct is the goal. HLSR goals are defined at a higher level than ISA goals,

but map fairly directly to a combination ISA goals and some ISA infrastructure code. An HLSR

goal is an object (see 2.5.1.3) implying that it can contain relations and be associated with object-

oriented interfaces. An HLSR goal is always associated with the IGoal interface. This interface

provides to two important queries - IsMet and HasFailed. The developer defines these queries

(indirectly) for each type of goal. These queries indicate to the architecture and other HLSR

knowledge when the goal is met and when the goal has failed (can never be met).

HLSR supports achievement goals and maintenance goals. An achievement goal is

automatically reconsidered by the architecture whenever the goal becomes met or fails. A

maintenance goal is only reconsidered automatically when it fails.

The second construct is the transform. The transform is the most complex of HLSR's

constructs, and maps to multiple ISA constructs and processes. However, a simple transform

maps fairly directly to the primitive forms of transforms provided in ISAs (section 2.3.2.3).

A transform is an object, as a goal is. It contains a transform goal, a set of relations

referred to as transform local memory, a set of productions called elaborations, and a body. A

transform goal is the goal that the transform will attempt to achieve. A single transform instance

can only ever be associated with a single goal instance. Transform local memory is similar to

55

local function memory in traditional programming. It maintains the important relations relevant

to transform body execution. Elaborations are discussed in 2.5.1.1. The transform body is the

centerpiece of a transfonm. It contains a set of memory patterns, memory manipulations, and

execution constraints that define a set of related processes that are required to achieve the

transform goal.

A transform is also associated with the ITransform interface. This interface provides

access to the transform execution states (see 2.3.2.3). The architecture executes two automatic

processes on transforms. First, the architecture automatically reconsiders transforms under the

following conditions: the transform succeeded, the transform failed, or the transform goal was

reconsidered or unconsidered. Second, the architecture automatically tags the transform goal

with the transform. This reduces the low-level code that must be written to manage the

processing of goals (see 2.2.1).

The third construct is the preference. A preference is a production that instantiates a

preference hint based on a memory pattern. Preferences are defined at a higher level in HLSR

than in ISAs. In fact, ISAs do not always have built in support for symbolic preferences, but

such support can be supplied through the compilation process and runtime libraries (see 2.6.2.3).

A preference reactively generates hints to the architecture about which objects, goals, and

transforms should be committed or unconsidered at any given time. HLSR provides several

types of preference hints with differing levels of specificity as to what decisions are preferable.

First, unary priority hints assign absolute qualitative priorities to objects. An example is

assigning the qualitative value "critical" to a goal. Second, a binary preference hint assigns a

relative priority between two objects. An example is specifying that a goal to avoid a missile is

more important than a goal to refuel. Finally, a unary selection hint specifies a preferred CCRU

56

process to execute on the object. This CCRU process can be either commit or unconsider. An

example is specifying that a goal to refuel should be committed (changed to the active state).

The ISA is ultimately responsible for all decisions, and thus it is not required to execute

preference hints. The ISA must apply its conflict resolution mechanisms together with any

compiler generated preference hint management code to make final decisions as to the state of

any considered object.

2.5.1.3 Constructs for Encapsulation and Packaging

HLSR provides several constructs that have the exclusive purpose of helping create units

of behavior that can be encapsulated and reused. To some extent all HLSR constructs share a

common theme of encapsulation. Productions, goals, and transforms all package and

encapsulate important elements and processes needed for intelligent behavior. However, some

HLSR constructs are designed primarily for this purpose.

The first of these constructs is an object, where here "object" is used in the object-

oriented (00) sense. An object is a collection of relations between one symbol and another.

Objects can represent real-world objects (e.g. a tank) or concepts in memory (e.g. a task). In ISA

terms, an object represents a belief. Two important characteristics of HLSR objects are as

follows: all HLSR objects are associated with type definitions, and all HLSR objects are

inherited (00 terminology) with the base type symbol. That is, an HLSR behavior model

represents declarative memory as a set of symbols, just as ISAs do.

Type constraints are somewhat controversial among behavior developers. Developers

with a scientific or psychological background tend to dislike object typing because they feel it

reduces the runtime flexibility and psychological plausibility of the model. Developers with a

57

software engineering background tend to like object typing because it reduces data entry errors

and increases modularity.

It is not object typing itself that is the limiting factor for runtime flexibility as much as

how object typing has been implemented in 00 systems. In 00 systems types are specified by

the developer within the code and cannot be changed. Furthermore an object can only be

associated with one type during its lifetime. HLSR uses a more flexible typing system where

types can be modified during execution, and an object's type can be changed during execution.

This allows for more flexible execution while retaining the primary benefits of typing.

HLSR provides two constructs for encapsulating closely related memory patterns and

memory manipulations. These are the query and the manipulator, which are close cousins of

Prolog predicates and traditional software functions respectively.

A query applies a name and a parameter list to a collection (block) of logical memory

pattern conditions. A query can then be invoked (executed) in places where the logical memory

pattern encapsulated by the query is required. Queries are used to encapsulate parts of

productions and transform bodies (see 2.5.1.2).

A manipulator applies a name and parameter list to a collection of memory manipulation

statements. More specifically, a manipulator encapsulates a portion of a transform body. A

manipulator can be invoked (executed) within a transform body or within another manipulator.

Queries and manipulators are important concepts because they provide a level of

indirection that is important for achieving least commitment to dependencies (see 2.2.2.1).

Rather than having a transform body or production depend on the details of some memory

structure, they can depend on a higher level concept and set of parameters. The mapping to

58

lower level memory structure can be made in an isolated, central location that is easy to

understand, modify, and maintain.

Queries and interfaces can be collected together to form interfaces. An interface is a

named set of queries and manipulators. HLSR supports two types of interfaces. The first is an

object-oriented interface, which, as its name implies, is associated with an object. Its queries and

manipulators are used to access the object's relations. The second is referred to as a procedural

interface and is closely related to callback interfaces in traditional software. A procedural

interface is used by a transform to access knowledge that is necessary for transform execution

but can vary depending on how memory is structured. In either case, interfaces are a key

component for packaging and reuse because they explicitly define and encapsulate the

knowledge elements that form the boundaries between different behaviors.

Production sets are the last of the HLSR encapsulation constructs. A production set is

an object that encapsulates a collection of related productions. Productions within a production

set can only fire when that production set is activated. Production sets also hold relations just as

objects can. These relations form a common context shared by all productions, and the

productions within a preference set can reference these relations in their memory patterns.

2.5.2 Primitive Memory Processes: CCRU

HLSR leverages the CCRU concepts described in 2.3.3.2 to form primitive memory

operations. HLSR's CCRU primitives are at a higher level than ISA CCRU processes.

Specifically, HLSR CCRU primitives apply to symbolic knowledge only, and are applied

uniformly across all memory objects.

Using CCRU as the primitive foundation for HLSR memory operations leads to behavior

models that emphasize least commitment principles. Furthermore, though HLSR CCRU

59

processes do not always map directly to ISA processes, they follow a similar pattern as ISA

CCRU processes and thus tend to have natural mappings to ISA processes.

HLSR directly supports the four CCRU operations. They are implemented in a

straightforwvard way as four language keywords:

-Consider: consider changes an object's state from latent to considered. The consider

transform can execute on two classes of objects: existing objects in the latent state,

and objects that are newly created.

"* Commit: The commit transformation changes an object's state from considered to

activated. Any special activation process associated with the object or relation may

begin any time after the commit transformation is applied to it and before the

reconsider transformation is applied to it. Only objects that are already created and

are currently in the considered state may be committed.

"* Reconsider: reconsider changes an object or relation's state from activated to

considered. Any special activation processes associated with the object or relation

must cease after the reconsider transformation is applied to it. Only objects that are

already created and are currently in the activated state may be reconsidered.

"* Unconsider: unconsider changes an object' state from considered to latent. Only

objects that are already created and are currently in the considered state may be

unconsidered.

In addition to the CCRU state transformation processes, HLSR provides several

keywords for testing the CCRU state of an object. They are as follows:

* T Atpnt" A Intent nhject ik an ohject that has been unronsidered or has never existed

in memory. There are three testable sub-states:

60

"o Unconsidered: Objects that were previously considered, but have been

unconsidered.

"o Sensed: Objects that are currently being sensed by the sensory system.

"o Unknown: Objects that are not in memory and are not being sensed.

0 Considered: A considered object is an object about which a decision has not yet been

made. There are two testable sub-states:

o New-Considered: An object was initially constructed in memory from a

transform or an activator.

o Reconsidered: An object was previously activated and was reconsidered.

9 Activated: An activated object is an object to which a commitment has been made.

The semantics of activation vary by object. Table 5 defines the semantics for each

class of HLSR object.

Objects in the activated state may have special semantics associated with them. The

specific semantics implied by the activated state vary with each object type, and are summarized

in Table 5.

Object Activated Semantics

Goal Available for association with a transform - a transform can be
considered for the goal.

Transform Transform body executes

Belief (or general Is believed
memory object)

Production Set Productions within the set can fire
Preference Hint The decision suggested by the hint is made by the ISA

Table 5: Activation semantics for HLSR objects.

HLSR constructs that are not declarative memory symbols are not directly associated

with CCRU states.

61

2.5.3 Behavior Primitives for Sensing

Sensory system interactions vary not only with the underlying ISA, but also with the

environment in which the behavior model is situated. Each ISA has its own mechanisms for

interacting with a sensory system, but they have the same general form. That is, some bridge

component (sometimes referred to as a simulation interface when a behavior model interfaces

with a simulation) transforms information from the environment to a form suitable for

representation in the ISA's memory. Sensed information is volatile in that it may be removed

from memory at any time when the environment changes or the sensory system shifts attention.

HLSR leaves the details about how the sensory system interacts with the behavior model

to the compiler, architecture, and external sensory system components. HLSR requires that

sensed elements be converted to objects (symbols) in the same form as any other memory

element. HLSR also requires sensed information to be typed as are other objects. This leads to a

uniform memory model where the same mechanisms and constructs used to manipulate non-

sensory objects can also be used to manipulate sensory objects.

Figure 14 shows how sensory objects are manipulated in HLSR. Any sensed object is

placed in the sensed sub-state of the latent CCRU state. HLSR knowledge can test for this state

in memory patterns just like for any other CCRU state.

62

C°onsider Commi
(U") Unconsider

Sensed i)Unknown U Unconsidered

Figure 14: Augmenting the latent state with the "sensed" state to support the sensory system.

In part because of its volatile nature, most sensed information must be internalized.

Internalizing sensed information involves copying part or all of the sensed information into

memory so it is not lost when it is no longer sensed. This process is the source of a significant

amount of low-level detail management in Soar and Act-R code (see Perceptual/Motor

Interaction in Appendix A), and it is easy to for beginning knowledge engineers to get it wrong.

HLSR provides an abstraction for the internalization process in the form of an internalize

statement. The internalize statement is equivalent the consider CCRU process except that it

considers a sensed object and all objects related to the sensed object. More details are provided

in the Specification of a High Level Symbolic Representation (HLSR) for Intelligent Systems.

The sensory system ultimately controls the quantity and form of sensory system

information; therefore, a behavior developer must interact with developers (if any) responsible

for integrating the behavior model with an external system to understand what objects may be

available for sensing in the behavior model.

63

2.5.4 Behavior Primitives for Motor Actions

Most behavior models are required to interact with some external environment. This

implies that HLSR must have some mechanism for expressing and executing external actions.

Soar and ACT-R interact with external environments using a motor system. The motor system is

usually a combination of built in ISA processes and structures together with environment

integration processes that are customized for each behavior model application.

Motor system interaction is a source of a large amount of low-level, error prone code in

both ACT-R and Soar (see Perceptual/Motor Interaction and Output command structures &

Proprioception in Appendix A). HLSR provides a higher level of abstraction that makes the

behavior developer's responsibilities for managing motor interactions easier.

First, HLSR leaves most of the details of motor command execution up to the compiler

and architecture. This includes the processes of output command status tracking and error

reporting. From HLSR code, motor commands are executed through special object types called

command objects. Command objects are treated in HLSR in the same way transforms are

treated, with the exception that command object bodies (equivalent to transform bodies) are

generated by the compiler or other external processes rather than the behavior developer. The

relations defined within a command object form its parameters. The architecture and motor

system track command execution state and update the command object with the same state

information that transforms provide.

Commands are a form of behavior primitive in that they cannot be further decomposed

into smaller sub-behaviors within HLSR. Behavior primitives are often application and domain

opecific. However, many applicatione chare cimilar primitiver, cuch nr thone to cend mrervnge_

64

HLSR defines a set of standard primitives that are commonly used in behavior models. These

primitives are described in Appendix B.

2.5.5 Failure Handling

A robust behavior model requires the ability to detect failures and respond to them. Both

Soar and ACT-R have low-level mechanisms for detecting some classes of failures. Soar

provides the impasse mechanism for detecting reasoning failures due to a lack of applicable

knowledge. ACT-R has mechanisms for detecting retrieval errors from both memory and

perceptual/motor modules, and also provides a special tag for productions that manage the

failure. However, these processes are very low-level, and do not provide much high-level

information about the semantics of and reasons for the failure.

To leverage these mechanisms effectively, behavior developers must design additional

structures and processes on top of the built-in mechanisms. These processes are time consuming

to build and maintain, and are often not built at all, leading to behavior models that are less

robust than desired. HLSR helps make the process of failure management and resolution easier

for a behavior developer by standardizing the failure management and resolution process and by

specifying high-level knowledge and semantics with each failure.

Failures can be detected either by the architecture or by higher level processes defined

within HLSR. In either case, HLSR constrains the failure detection and management process.

HLSR also defines an explicit failure object construct for encapsulating knowledge about a

failure. These constraints and failure objects allow HLSR knowledge to manipulate and recover

from failures gracefully.

65

Detect
Architecture OR 7 Failure"
HLSR Knowledge

Generate
Detecting Entity Failure Object

Standard goal- Generate Goal O Achieve Goal
Sdari goal- to Resolve
driven process ailure (Transform)

Figure 15: Error handling process in HLSR.

The HLSR failure handling process consists of a set of processing constraints shown in

Figure 15. These constraints define processing steps that must be carried out by a combination

of the ISA and HLSR knowledge:

1. Detect the failure.

2. Create and consider a failure object describing the failure.

3. Commit to the failure object.

4. Create and consider one or more goals to resolve the failure, referred to as failure

resolution goals

5. Commit to one or more failure resolution goals

6. Create and consider one or more transforms, referred to as failure resolution

transforms, to achieve the goal(s) committed in (2)

7. Commit to one or failure resolution transforms

8. Execute the failure resolution transforms until the goal(s) committed in (2) are met

66

If the failure is detected by the architecture or the sensory/motor systems, steps (1) and

(2) are executed entirely by the architecture. The architecture makes all final decisions for

commitment, and thus steps (3), (5), and (7) are executed by the architecture, but can be

influenced by preferences. Steps (4), (6), and (8) define the failure resolution and recovery

process. They are implemented in HLSR knowledge that reacts to the existence of the failure

object and begins a failure resolution process that is encapsulated by the failure resolution

transform(s).

Ultimately, the failure recovery process is defined by the behavior developer in one or

more goals and transforms that reason about and resolves the failure. HLSR provides a standard

interface and infrastructure for failure management and resolution. This interface and structure

alleviate the need for various ad hoc failure detection processes and structures that often clutter

behavior models.

HLSR provides a set of built-in failure objects that encapsulate common reasoning

failures. These built-in failure objects as well as the details of the failure detection and

management process can be found in Specification of a High Level Symbolic Representation

(HLSR) for Intelligent Systems.

2.6 Compiler Design

HLSR requires a compiler to translate HLSR language statements into a form executable

on the target architectures. During this effort, we defined requirements for the HLSR compiler,

mapped HLSR constructs to specific representations in ACT-R and Soar, and explored in-depth

the design of an HLSR-compliant compiler for Soar, HLSR2Soar. This section summarizes the

compiler requirements and high-level design. Requirements for an HLSR Compiler presents the

requirements and design in greater depth.

67

2.6.1 Compiler Requirements

This section summarizes basic requirements for any HLSR compiler. The high level

requirements are:

"* Given an HLSR source code program, verify syntax, and generate native code for

execution on a ISA (Soar or ACT-R).

"* The compiled program should be able to run on the chosen ISA; however, there will

be a number of speed, space and fidelity tradeoffs that any compiler makes when

implementing a target program from HLSR.

* The compiler should be written in a modem, high level language such as Java or C++.

* A compiler-compiler tool (e.g., yacc (yet another compiler-compiler) and

descendants) should be used to generate the general parser code from a grammar

specification

Parser requirements:

* The grammar specification should be in Backus-Naur Form (BNF) or extended BNF

(EBNF). This requirement ensures that standard tools can be used to parse HLSR.

* Syntax errors in behavior specification should be reported to the user

* The output of the parser should be represented in an intermediate form. Initially, we

assume the intermediate form is a parse tree, which satisfies this requirement.

Code generator requirements:

"* The code generator should accept as input an syntactically verified HLSR program,

represented in the intermediate representation

"* A mapping of HLSR processes and representations to specific constructs in the target

ISA representation. The mapping may require a model of the target architecture.

"* An ISA runtime library, which manipulates and tags program data structures

according to the constraints of HLSR.

"* The output of the code generator will be a program executable on a specific ISA.

68

2.6.2 Compiler High-Level Design

The proposed HLSR compiler architecture is illustrated in Figure 16. The two main

components are the parser and the code generator. Details of each of these modules are

described in the following sub-sections. This effort focused primarily on the Code Generation

module, and specifically mappings from HLSR source to the target architectures, ACT-R and

Soar.

CHLSR

rParser

•r_ pcfctionR (X\e

Figure 16: The -LSR compiler architecture.

69

2.6.2.1 Parser Design

The first major component is the parser. Parsing is the process of determining if a string

of tokens is a legal sentence in some specified grammar. The HLSR parser will construct a tree

representation of the input HLSR code. When a parse tree cannot be constructed, this signals

and error in the input code.

A parser can be constructed for any regular grammar and, importantly, is ISA

independent. Thus, the first stage of processing in an HLSR compiler should not be specific to

any target architecture. The parsing process consists of four main tasks, lexical analysis, syntax

analysis, semantic analysis and intermediate code generation. These components are detailed in

Requirements for an HLSR Compiler.

2.6.2.2 Code Generator Design

The code generation component consists of converting the intermediate code generated

by the parser into a form executable for the specified ISA. A critical requirement for code

generation is a mapping between the high level representations and processes of HLSR, and the

specific mechanisms and representations of an ISA. This effort focused on two specific

architectures, ACT-R and Soar, and defined mappings directly from HLSR to each of these

architectures. This section briefly summarizes the specific mappings developed in Year 1 for

Soar and ACT-R. Requirements for an HLSR Compiler discusses these mappings in more detail,

including tradeoffs in the specific choices, and a detailed mapping and design for an HLSR2Soar

compiler.

Table 6 lists some of the mappings developed during the course of the project. For

example, beliefs are represented in ACT-R as declarative chunks and are activated by way of

their assertion in a buffer and retrieval using ACT-R's spreading activation mechanism. In

70

contrast, Soar beliefs are represented as objects in Soar's working memory (beliefs are actually

organized into named collections in working memory; see Requirements for an HLSR Compiler

for details) and Soar's decision cycle is used to activate beliefs.

HLSR Mapping to ACT-R Mapping to Soar
construct

Activator / R: ACT-R Production Rule R: Soar Production
Terminator A: Conflict Resolution Cycle A: JTMS
Belief R: Declarative Memory Chunk R: Declarative Memory

A: Buffer Creation + Spread. Act A: Decision Cycle (DC)
Goal R: Goal Buffer + Declarative Memory R: Declarative Memory

A: Production Rule + Retrieval A: Decision Cycle

Manipulator R: Production Rules + Commands R: Soar operator
A: Conflict Resolution + Buffer A: Decision cycle

Preference R: Production Utilities R: Soar Productions
A: Conflict Resolution Cycle A: Decision Cycle + Learning

Production R: Type-Specific Production Set R: Declarative Memory (problem space)

Set A: Conflict Resolution A: Decision Cycle
Query R: Sequence of Retrievals/Tests R: Soar elaboration

A: Conflict Resolution Cycles A: JTMS
Transform R: Set of Production Rules R: Declarative Memory

A: Conflict Resolution Cycles A: Multiple Decision Cycles

Table 6: Mappings from HLSR constructs to ACT-R and Soar. "R" indicates the data structure used to
Represent the construct, "A" indicates the mechanism in the architecture by which HLSR Activation is

achieved.

2.6.2.3 Run-time Libraries

Figure 16 includes a run-time library as a component of code generation. . These

libraries enable the mappings from HLSR to the ISA in those situations where an HLSR

construct is not directly supported by the architecture. For example, we chose to map HLSR

goals in Soar to structures in declarative memory, rather than Soar's low-level impasse goals

(Requirements for an HLSR Compiler discusses this decision in more detail.). However, that

decision requires some additional knowledge (represented as Soar productions) to monitor for

goal achievement, goal failure, etc. because the mapping does not leverage the inherent

capabilities of the architecture for this functionality.

71

Figure 17 presents a schematic production that will be present in the HLSR run-time

library for Soar. It simply says that if a (HLSR) goal in Soar memory is an activated

achievement goal and the conditions specified by the developer that indicate when the goal is

achieved (InternalIsMet) have actually been achieved, that the goal's status is marked as

"achieved". Other components of the HLSR run-time for Soar would then act to reconsider the

goal (because HLSR requires the immediate reconsideration of any achievement goal when it has

been achieved). The run-time library thus acts as an enabler for the execution of HLSR in each

ISA. The run-time library is not generated by the compiler but is hand-coded. However, the

run-time library is a component of the compiler, and needs to be written only once for each target

architecture.

HLSR-RTL: GOAL-ACHIEVED

IF

a goal is an achievement goal

the goal is activated

the goal's internal-is-met conditions are satisfied

THEN

the goal's status is achieved

Figure 17: An example production in the HLSR run-time library for Soar. This production marks the status
of an HLSR achievement goal as "achieved" when the goal's "Internal Is Met" conditions have been satisfied.

2.6.3 Reference Models

Agent knowledge implemented for a particular ISA should be reusable from one

application to another, reducing development costs over multiple projects. In practice, however,

72

reuse of knowledge and transfer of validation is limited. Limited reuse results from the large

gap between the high-level specification of the architecture and its actual implementation and

the complexity of the ISA software systems, which evolve with advances in research and new

implementation technologies. The lack of specification and difficulties with reuse are

particularly acute problems for HLSR because both the compiler and the run-time library are

dependent on the specific version of the ISA.

We explored the feasibility and technical hurdles for creating formal models of ISAs

such as Soar and ACT-R and built a preliminary Soar model. The model was defined within an

ontology representation tool that provides a foundation for the definition of semantically well-

defined classes and relations with which to describe architecture components (representations

and processes), their interrelationships, and their connection to software engineering and

artificial intelligence concepts [43]. More details of the model are discussed in Towards Formal

Models of Cognitive Architectures. This section summarizes the model we developed.

We defined Soar components and relationships, creating an initial high-level ontology

with instances corresponding to the processes and representations of Soar. The current model

consists of 66 classes and 51 property slots. We followed a common ontology representation

methodology [32]. Because ontologies can quickly become "theories of everything," we focused

our design on some key competency questions related to the articulation of one of the core ideas

of HLSR, the CCRU processes, and the initial design of HLSR2Soar. Thus, the model is by no

means complete, but does provide answers to some many HLSR-relevant competency questions

[32].

73

Figure 18 provides a view of the ontology showing some of the concepts in the model

(Algorithm, Intention) and components of Soar that map to these concepts (instantiation support,

selected operator).

Fik Ed" Vie Go Boolbmo .' lookb Wind, Help

1B w ,' F:ld 1.ý fie:/?C:N WrySm rectVPraiect •HLSR PRDN ~r hitecture~Aj ysir./ -o rm•%2O •ar% 2O • delfnd" .m l saw ahi PI~

Bod• F •iwod F •iReloadh

timHomo $Dvok^ow,. dh.
4

tM eW.. l fWndnabM d, eTIdA'SPORTAIION jRadio 41P1upl, eY I.r o I oad Oefl-Vg..

oAlgorithm

Instances : soar input function, soar output function. automatic subgoalini
"* ReasonMaintenance

Instances: Instantiation pport goal depenenncy set
"* Matchina

a Rete
Instances: soar Rete

"* ConflictResolution
Instances: decision proce&ire"• Le•
Instances: c .n.kino

* MentalPfimifive
o MentalRepreentationilPrimitives

"* Intention
Instances: selected operator, output command

"* Belief
Instances: workinjg memory elements, impasse state, input working memory elements

" Desire

Instances: proposed operator
" Plan
"* Obieation
"* Production

Instances: elaboration roposal, evahlation, application
"* vale

o MentalProcessPrimitives
"* Consider

Instances: elaboration operator proposal
"* Commitment

Instances: commit belief elaboration commit belief impasse slate commit intention operator
commit belief input WMEs commit intention output

"* Reconsider

Figure 18: This example shows a partial view of the class hierarchy. We represented HLSR representational
and process primitives such as intention and commitment and mapped Soar objects to these concepts.

74

3 Feasibility Demonstration

An important goal of this effort was to prove the feasibility of the HLSR concept. Given

the limited time frame of this first year effort, it was not possible to build full scale compilers

and thus prove feasibility by construction. Instead, our approach consisted of the following two

steps:

1. Design mappings from HLSR constructs and constraints into Soar and ACT-R

constructs and processes. This process and the results were discussed in Section 2.5.

2. Implement a small scale example that shows HLSR code compiled to Soar and ACT-

R code. This process is the focus of this section.

The first step shows that, in general, there is a plausible mapping from HLSR to ACT-R

and Soar. The second step shows that the implementation details of HLSR are compatible with

each ISA and can be implemented reasonably efficiently (though efficiency was not a primary

concern for these examples). This approach does not prove feasibility altogether, both because

of the limited scale of the example and because we compiled HLSR "by hand" (that is, manually

translating the HLSR code rather than using an automated compiler) to demonstrate

functionality. Within these constraints our demonstration was successful and indicated that no

fundamental road blocks to implementation are present and that the translation process can be

accomplished for the core HLSR constructs (i.e., those that are exercised in the example).

The rest of this section describes the implementation of a simple example from design to

Soar and ACT-R code.

75

3.1 Tools and Editing Environments

Any programming language, of which HLSR is specialized version, requires tools and

editing environments to allow engineers to leverage their full capabilities. It was not in the scope

of this effort to build HLSR tools; however, it was part of our plan to investigate and evaluate

viable options for HLSR support tools.

We anticipate two classes of user for HLSR. The first class of user is the knowledge

engineer who will build and maintain behavior models directly using HLSR. The second class of

user is the end-user tool developer who will use HLSR as a "back-end" representation for storing

knowledge generated by the tool. Each of these users requires different interfaces and support.

The knowledge engineer typically interacts with encoded knowledge using a

development environment. The best environments integrate editing, browsing, execution, and

debugging into one system. These are often referred to as integrated development environments

(IDEs).

We developed a mockup version of such an IDE that included only editing capabilities.

We used the Visual Slickedit IDE (http://www.slickedit.com!) as a base system, and customized

its lexing and syntax highlighting capabilities to handle HLSR knowledge. We used this

customized Visual Slickedit configuration, shown in Figure 19, to create the HLSR examples for

the feasibility demonstration.

76

rgFtII Edi Se-w6'f Viewý Project Build Docuent Macro• Tools W ndov, ilelp ••

Lk A:t'l A-0 A--2A

.... E *; .; ' 7 -.......-- -........................

5~ 0/ze Evm4*tO HL wo t~rd hlvityle I
4
.es-ageILbI' - V

t.pe ContentCollection IS* Cnl6ectilm of N content Isoa sinbol HLS.- Esroo FaNfelt,-l.N~

I Jioorfc~ne& oApnCtld for o ~S'oeoZP wEtsmp* w~ FHnik Nn
ri fL roestra ista Entityd Eme~
re ris; m; to xea Entity HLSf-En'p~ r L

P we eu contents !a ContentCollection

J, create a ~essgr' w'ith to and Irown
bit lesa ye((t) a Entity. (t> ila Entity)
ceesI.Ier <self >.f"oo <f>
co1sidel (eelf).to (t>"-d

.9 Acc&so to the ~*okeqe
istestilce 1hossae

* Add -&nt.t It. the.V ao only~ thWoh 001Y i thin .irl
amimpiteo- AddContent(<c> isa syo]l)
Xr.11- deci comui•dr <Oelf).contents.content (c>

od

-dsod

I Affsxg~e iiy dmefiniYtioh inhC- oltii voertion top dfeen y
Jr of ,o~i
Ilipe RequesttpeedClan"eflessage Ista essage

I FPetvntd trý Lo \L) honr.6
.tringll Speonds keedfnqueutor
".e-ornot'Doi

-Jlintw

Sr iiiere to& th essi g
Interface IfluestspoodClhssgslenssge _j BP - Ootoflow dogns IN Pol~lc

0 gar" thew V'Awed f~n the cOnltenft. /foep. p depenld eft the conttent jU
Jr Aniag of tihe Foa'rp red SWV'r Aeowver nnythe'g~ evid appor
I hetoslo .- pled and S"

4
. 'krwed chdw* JtWe

qnnv 2fed~esquextudC<<peei) isa eulear>
acitirtests contents.content (speed)
contents. Is[lefore(',poed". <speed)) _jHS- Emil -O5gnI

sod_j 14LSR - HOh I&W vroblo ov& tm.ji.

required fo nweg ninesuigH S . o

ende

ID s ir dift oicpy of andcb's blip tlareton. to build; hsonlowe thi,
-f _*l Apt *&a e r.enty., scrn tAere arYtoo Ar.- thAt shon.ld ire der-ivedf a, -. . . .

Lin-480 Coll 20In

Figure 19: Visual Slickedit environment customized for HiLSR. This is an example of an IDE such as will be
required for knowledge engineers using HLSR.

IDEs are difficult and labor intensive to build; however, recent work in the open source

community has led to the development of IDE frameworks that supply the fundamental IDE

capabilities. These frameworks strongly support extension through "plugins" and other

77

mechanism, and are being used in traditional SE as the core tool around which many IDEs are

built.

The Eclipse project (http://www.eclipse.org/) provides one such framework and it has

been successfully leveraged to build a prototype editor for Soar. We propose to base HLSR tools

on the Eclipse framework as is being done for Soar. This will greatly reduce the effort required

to build the IDE, and encourage faster adoption of HLSR due to development tool support.

The other class of HLSR user, the end-user tool developer, typically requires a program-

friendly (i.e. computer-friendly) interface into a representation. End-user tool developers do not

usually write and manage back end representations, but rather, write systems that input, output,

and transform such representations.

The current standard for program data storage is the Extensible Markup Language

(XML). We intend to implement an intermediate form of HLSR in an XML format. This will

enable end-user tool developers to use HLSR with standard XML parsers, and will allow format

and syntax checking supplied by XML schemas. The XML intermediate form, and its further

advantages are discussed in Requirements for an HLSR Compiler.

3.2 The AMBR Example

For the feasibility demonstration, we selected a behavior representation task from the

Agent-based Modeling and Behavior Representation (AMBR) program [18, 35]. One of the

goals of the AMBR program was to compare the capabilities and characteristics of models built

with different ISAs. An overview of the specific AMBR task is provided in section 3.2.1. The

AMBR example was selected because it has several desirable characteristics:

1. Our team is familiar with the problem and had implemented both Soar and ACT-R

models for AMBR previously.

78

2. The required functional behavior is straightforward and relatively simple to

understand and implement.

3. The task, while simple, requires dynamic decision making based on conflicting

priorities and knowledge, and thus addresses some of the unique requirements of

behavior modeling.

HLSR is a tool for bridging the gap between design and implementation code. Therefore,

it is important that we create an example that exercises the development steps with which HLSR

interacts. These steps are the design phase, the implementation phase, the testing/debugging

phase, and the maintenance phase. The latter two phases are difficult to test without building a

large system over time using a set of well-developed tools; therefore we were unable to test them

in this effort. However, our approach incorporated both design and implementation, thus

allowing us to do a preliminary analysis on how HLSR affects the development process.

AMBIR0. Chose Problem
Prbem

I Create Design 2. Focus 3. Map to HLSR
;- • Implemtat constructs and write codei o HLSR Constructs & Code

4, Hand compile to ACT-R

S. Execute Soar

(Soar)

n -: or [/A

Figure 20: Development approach used for AMBR example.

79

We used a five step development process that is diagramed in Figure 20. The preliminary

step involved choosing the example, which is discussed above. Our first development step was

creating a design. HLSR should map well to design constructs thus reducing the amount of

effort a developer must use to map design constructs to code. Our second step involved selecting

a portion of the design for a detailed implementation. A complete implementation was beyond

the scope of this effort, so we selected a portion of the task for detailed implementation, as

described in section 3.2.1. Our third step was to design HLSR code to implement the example.

Several attempts and edits were made on this code over time to reflect changes to the HLSR

specification, and improved implementation technique. Our fourth step was to hand compile the

HLSR code to ACT-R and Soar code. This hand compiling process followed the mappings

described in 2.6.2.2, with additional details not covered in the compiler mapping documents

dealt with on a case by case basis using best practices for the given architecture. Finally, the

Soar code is complete enough for execution, and thus we executed it to make preliminary

performance measurements. The ACT-R code is executable, but the extra data structure and

detail setup required to execute it was not implemented due to project time constraints.

The final code for this example is available as Appendix C, D, and E of this report.

3.2.1AMBR Problem Specification

The AMBR task simulates one (simplified) task that an air-traffic controller (ATC) might

perform. The ATC is assigned an airspace and monitors the aircraft in the assigned airspace.

The monitor is represented on a simulated radar screen. There are two primary task conditions in

AMBR, aided and unaided. In the aided task, the representations of planes on the screen are

color-coded to indicate a task that needs to be performed on them. In the unaided task the

representations of planes are not color-coded, and the ATC must evaluate the screen and

80

individual aircraft to determine which task needs to be performed. For the feasibility

demonstration, we used the unaided task. That is, the behavior model implementations ignored

colors. The ATC tasks for both the aided and unaided problems include:

" Accepting an aircraft into the ATC-controlled airspace (when contacted by another

ATC),

" Welcoming a aircraft

" Transferring an aircraft to another ATC

" Contacting another ATC (to complete the transfer)

" Deciding whether to accept or reject a speed change request

The challenge in the task is that there are many planes, and any of them may require

attention at any one time. Penalty points are assigned both to incorrect actions and to delays, so

the user has a sense of urgency in performing the task. All tasks are performed via the

manipulation of a GUI, shown in Figure 21, requiring interaction with an outside world.

A message buffer on the right-hand side of the display provides a record of activity. A

user can inspect this buffer (called a message history list, MHL) to determine what operations

have previously been performed on a blip (because there are penalties for taking incorrect action,

inspecting the buffer is important to ensure that the right action is taken).

81

E • 7. ,• :• ,.- Il ll ll Il ll Il l l l Illl...l...I...lIll I I Illlll l " ..

Figure 21: AMBR air traffic control screen.

For the feasibility demonstration, we focused on only one small segment of the AMBR

task - responding to a request for a speed change by a contact. The rules for this task are simple:

"* Reject a speed change request if another plane is in front of the requesting plane.

"* Otherwise, accept the speed change request.

Several aspects of this task made it desirable as an HLSR example.

1. It was simple enough to complete within the scope of this effort

2. It involved reacting to an external stimulus (the speed request response).

3. It involved interaction with the motor system (sending the response)

4. It involved making a decision based on context.

82

5. When considered in the context of all of the other decisions that must be made, it

required goal driven behavior to achieve behavior consistency and ensure that the task

is executed to completion.

The design and implementation of this task are covered in the following sections.

3.2.2AMBR Problem Design

There is no standard design methodology or process for behavior modeling. We selected

the agent oriented programming methodology (AOP) Prometheus [33] as the basis for our

design. We augmented this methodology with additional features necessary for our behavior

model. We selected Prometheus for the following reasons:

1. It has sufficient documentation for picking up and using quickly.

2. Though not a behavior modeling design methodology, it shared many characteristics

with behavior modeling processes, and thus mapped well to our problem.

3. It provided diagrammatic structures and formalisms for representing design, thus

alleviating the need for us to invent them.

4. It is currently being used to build agent-based systems; that is, it is not "dead"

methodology.

Figure 22 is an interaction diagram that shows important behavior model elements and

how they interact (Figure 23 contains the key for Figure 22). It follows the path of receiving a

message and processing two message variations: a request for speed change, and a request for

aircraft transfer. We focus our attention on the portions of the behavior inside of the boxes. This

includes the request for speed change behavior and preferences for this behavior.

83

Procedural Decomposition (interaction Diagram)

T-W

Spot

r [R ~ P rptp i .q.....

RI (• (D•IS f.¢ flt) e

**I 2 • - y. .- R_

Rm j -

Figure 22: Design for the Answer Speed Request and related tasks using a modified Prometheus

methodology.

S.olo
Sy =sem Cnnnnan pl

" " Un. un pecta situtio -. M_._ _osjet o" e

S (Ineldot terr

Event of I~ toAed t . Tmrdnsorm (P1lan)" Goal

i .in.... Pm refr. , Suuhvou Petn

-t..-....... ReeintveConnaieratmin lii

Figure 23: Key for Figure 22.

The behavior for processing a speed request message is triggered by the existence in

memory of a Request Speed Message that has not yet been processed. The rectangular boxes

together with the arrows show a portion of the taxonomy of messages in the system. The red

arrow pointing into the Answer Speed Request goal indicates that this goal is reactively

considered when a Request Speed Message is committed. The red arrow pointing into the Simple

84

Send transform indicates that this transform is reactively considered to achieve the Answer Speed

Request goal. The Simple Send transform proposes a choice to either accept or reject the request.

This choice is formed as the consideration of two tags on the Request Speed Message: Reject

Request or Accept Request. The preferences diagramed in the lower box, influence the choice of

which tag is committed. If the aircraft is blocked in front, then it is preferred to reject the

request. If the aircraft is not blocked, then it is preferred to accept the response. Finally, the

Simple Send transform considers the Send Message goal to reply to the requesting aircraft with

either the accept or reject response.

The diagram in Figure 22 emphasizes interaction between components, but should not be

interpreted as implying that behavior is sequential. Static diagrams are not well suited for

expressing the dynamic features such as conflict resolution, thus these aspects of behavior are

often not adequately described in designs. Other design decompositions and perspectives can be

used to emphasize other dependencies and interactions within a behavior. Some of these are

provided in the HLSR Feasibility Demonstration Design and Code Package.

3.2.3 HLSR Code

One important goal of HLSR was to make it easy to map design constructs to HLSR.

Looking at the diagram in Figure 24, we see that this goal has been met. The yellow boxes

indicate constructs in the diagram that map directly to HLSR constructs. While we added the

preferences and the tagging operation to the Prometheus methodology, the remaining elements of

the design are based directly on the Prometheus methodology. Therefore, it is clear that our

design is not custom built to map to HLSR.

85

Procedural Decomposition (Interaction Diagram)
T-zfe!

d, MýO

SSP~d

Chwge

Fn Se I • ped d Tote

ST "

"R. .. M. WP.

aoS.dR.1Rjc
Sta~d~d

Figure 24: Mapping HLSR constructs onto the design.

The complete HLSR code for this example is supplied in Appendix C. However, here we

provide an overview of the mapping of design to HLSR code. Note that as each design construct

is mapped to HLSR, its primary structure remains the same, but many details are added. The

design becomes the framework within which implementation details are added. This is an

important organizational structure for making large scale development efficient and maintainable

because it helps the developer encapsulate and track details at appropriate levels of abstraction.

The design captures the highest level structure and architecture. The encoded HLSR knowledge

captures the details of design.

86

type Me.sage

type ContentCollection isa collection of 0 conteni

r ciweieres font is. Entity
- e-rfernces; to i•. Entit y

ref ereeces contents is&a ContentCollection

*createa,rsg oats od a too,
Lit Melsage(<f> is Entity. <t> Iao Entity)

consider CoelIf.te .<t
ond

- C flnes1)- to Sheissg
inteface Ifle..age

F~ O dd -tento " ti. oeotgo ..oL" ty-j,,,h thi"s Y,
nnipalator AddContent(<.> U.a .9,"10>
r aequire decide cider <self>.contents.content

end

end o s

trqp RequeotSpeedChangenessage isa Messagei =t~,,um-eruaation SpeedRequestTokens"Message

intece lRequenttpeedChange.eMage

0 (ti- f/c -ed tea- t-e aeonteý. Aec,- dw
0 ho-,a~ et tC, f-W, "Ipe 5?/O'- eAvwr,~
9 loot-e, spe'd And ('-g iy."pd hakq,
qvee- Speedfequested(<upeed> ias wnxJeo

actiwoted contente.content <speed>
contents.IsBeforet("peed". <speed>>

end

end

Figure 25: Mapping taxonomy to type definitions.

Figure 25 shows a portion of the message taxonomy included in the design diagram.

Object taxonomies map directly to HLSR type definitions. Here we see a definition of the

Message type and a derived RequestSpeedChangeMessage type. It is important to remember that

the behavior model can reason over this taxonomy information as necessary to determine what

type of message it is processing and what each of its relations are (see 2.5.1.3). This structure

also serves as documentation of the behavior model's declarative knowledge, and can be

browsed by developers that are maintaining the model.

87

goal AnswerSpeedRequest isa AchieuementGoal

Local A-nvory ft., !oal
p rcfereences msg isa RequestSpeedChangeftsg

0 nlitla]eizt.
init AnswerSpeedRequest ((msg> isa RequestSpeedChange
consider (sel'>.pmsg (msg>

end

0 St=ndadd irttezf•cc fo1.1 goals
. ~interface lGoal

s l'n sa,,invq this goail Ys "rt on,& we have cortni"tred

V to a rep'c, and Auce sent it.
.rSpeed \ queryp Internall=set(<reply> isa MessageReply)

Rqst ~ activated (self>.nsg tagged (reply>
activated <Peply>.nsg tagged Messagegent

end

0 Can't easlt' detect Failulre without sone scvpsr
of tim'. /Iere is an atterpt. IYth idea is to
0 helieve thw gpat. has Faied ,'hon I haves r-Jected
Sa reply. Fit-is uay omr nay noo n.Ae sense depending
1 /o Agent design.
query InternalHazFailed((p> isa string)

past considered (self).nsg tagged <reply>
not past activated (reply> tagged hessageSent

unconsidered (self>).m9g tagged <reply>
end

end

Figure 26: Mapping goals to HLSR.

Figure 26 shows that goals map directly to HLSR goal constructs. We see in the HLSR

code that the InternalIsMet and InternalHasFailed queries are filled out indicating when the goal

is met and failed respectively. This important information is encapsulated with the goal

definition unlike in Soar and ACT-R where it is tangled with productions that manipulate the

goal.

AT ..ros.'orn to decider ho-. to answr . sP-d "7""et
transfoms SippleAnzserbec is ion

* "Feencs f fzrqrnts Frn thi" icerFae
mf.reswee i~terf-a ISendMessage

Cr 7he go,, th- transfo,.Y, isrteptiny to hic
9"1 ixa AnserSpeedflquest

STeantfoen local miery
refareacez -g is. SpeedRequest~egxage

0 Ahis in-it-iaLsee tah-os -aessg,.
init SimpleAnswerDecision((m> isa SpeedRequestHeseax

snid,- (self >.mg <.>
sd

a. Send isa SpeedRequest]esponte

• Thse ae not explicritly otered. conpi']i- choose
jr Aecide the res-os ,- want 1o have
ChooseResponse O>

0 Bind to the coice that -/- w tivottd.
a-tiv.•ed (self>.•sg tagged r,>

I Al,'7 'rps a goal tc, oceale,,,
4

the,ssq
eZ'afred .7n dCpe edi•I t epon eevr>)

sld

* ,*.Msij,ee.etoa's-sd to executet hody
iaterfýe SimpleAns~MDec ision

end

Figure 27: Mapping transforms to HLSR.

88

Figure 27 shows the transforms map directly to HLSR transforms. Important details of

the transform include the transform goal statement ("goal isa AnswerSpeedRequest") and the

body which executes after the transform is committed. Here we see that the transform is

intended only to achieve AnswerSpeedRequest goals, but it is possible to create transforms that

attempt to achieve any class of goal.

The transform body expresses process constraints. The ChooseResponse manipulator

encapsulates the process of tagging the speed request message with two possible responses. The

memory pattern (i.e. "activated <self>...") tests the message for an activated tag that indicates

the response the model has selected. Finally, the last statement in the transform body invokes a

manipulator to actually send the response. This statement is required; that is, it must complete

successfully if the transform is to complete successfully. The required statements are used by the

compiler and architecture to track transform success and failure, which are useful for automatic

tagging and process tracking (section 2.3.3.3). Other transform details are shown in Appendix C.

jnadaat: Sind.pDeoideaPrdgt
172Yf .1.1 rt~c this ..retac
,.af.emcea ltE-nfacr lCnntactSpace

refasmremn contact !ix Contact

"P=c•~oo. R'qc=ut , 1ef pa

-- F~Z it - .4s,. isa etac ~A-d r.s.pe/sS

Raaao•e•t. RajectW•hnBlocked(<a> iza Acctpt5peedReqcest.
0.054 C> U. R:.jtt Pae=dlnat)

eand
Nnaaagaccnptntact((a>. Ce>)

ndefe- comait <r> anr. <a>

R~qý Rqýend
<a> asAg::ptt<pGodfeqUeat.
C,.> i RajetttPedilaqat)-

e~nd

alo4~O oanaietd <a>
cnidard Cr>

than
zof-, ceinit (a Wo

*ad

i~.Fa. 9 -.- d

and
and

Figure 28: Mapping preferences to HLSR.

89

Figure 28 shows that the preferences in the design map to HLSR preference constructs

encapsulated within a production set. Here the production set encapsulates two preferences. The

first preference hints that a RejectSpeedRequest tag should be preferred over an

AcceptSpeedRequest tag when another contact is ahead of the requesting contact. The second

preference indicates that the default choice should be to commit the AcceptSpeedRequest tag.

Request R g AM- speed wqlft Js
Speed activator PropaveGoa1AnsuerSpeedRequest

Message. (•essage> isa RequeztSpeedChangeM e.sage)

N a sede t, os~eta. th,,,.
activated <message>
activated (message>.f rom <f>

then
c/nns•ier <g> new AnsverSpeedltequest()

Answer
Speed\ .9 Aw AP7.e to do exedure a si+tple decis'ion
R St.. activator ProposeTransfoemSimpleAnsuerDecision

inariant
R/,ssieninog n, othr cond-ition.o nae swense
actiuated <gal)

. Send__, end consder new SimpleAnswerDecision for <goal>

Figure 29: Mapping reactive consideration arrows to HLSR.

Figure 29 shows that the design diagram's red dependency arrows map directly to

activators in HLSR. Two activators are shown here. The first considers a new

AnswerSpeedRequest goal whenever a RequestSpeedMessage is activated. The second considers

the transform SimpleAnswerDecision (a rename of SimpleSend) to achieve the

AnswerSpeedRequest goal.

Not only do the examples show how HLSR maps well to design constructs, but also that

HLSR is significantly more readable than native Soar and ACT-R code (as shown in Appendices

D and E). Readability helps support software engineers with shallow knowledge of specific

ISAs to build and maintain behavior models.

90

3.2.4 Alternative approaches to mapping

In Section 2.6, we described mappings from HLSR to both ACT-R and Soar. The

approaches we took to thee mappings represent two alternative approaches to executing HLSR

programs in the cognitive architectures. For the Soar mappings, we chose to develop complete

mappings that would guarantee a functional Soar program that closely adhered to the HLSR

behavior specification. However, this mapping introduces "gaps" in which Soar's mechanisms

and process do not (appear to) provide the complete functionality required by HLSR. For the

mappings to ACT-R, we chose to focus on a direct mapping from HLSR to architectural process

and representation. In some cases, these mappings may not be able to guarantee the same kind

of functionality (or even complete functionality) as required by HLSR. However, the mappings

are strongly motivated by the specific mechanisms of the architecture.

In effect, the alternative approaches to the mappings reflect a top down (HLSR-to-

architecture) bias in the Soar mappings and a bottom up (architecture-to-HLSR) bias in ACT-R's

mappings. Both approaches are important in understanding the requirements and limitations on

compilation. For example, the top down mappings satisfy basic functional and performance

requirements, but at the expense of not fully leveraging the architecture. The "gap" between the

HLSR specification of HLSR and the Soar mappings require the articulation of a computational

approach to bridge it. In the next section we introduce "micro-theories" to supplement the

HLSR-to-Soar mappings. The HLSR2Soar run-time library is effectively a realization of these

micro-theories.

The bottom up approach, as exemplified by the ACT-R mappings, strongly leverages the

architecture. However, because the mappings so rigorously adhere to the architecture, it may be

impossible to guarantee that all legal HLSR programs may be executed successfully by the

91

compiler/architecture. More realistically, when bottom up mappings are used, it will be likely

that an HLSR behavior developer will need to understand the underlying architecture in more

detail than when top down mappings are used, in order to ensure that the HLSR program can

execute on the architecture.

This competition, between leveraging the architecture and abstracting from it, represents

one of the fundamental tensions in the effort to create a higher level language for behavior

specification. The top-down mapping approach essentially views HLSR as a distinct

architecture. The run-time library provides an on-line translation of the higher level architecture

constructs to the lower level architecture, comparable to the relationship between interpreted

Basic program code and its execution on a specific hardware architecture. The bottom-up

approach attempts to define layers of abstraction above the architectures. The primary challenge

of this approach is to abstract just enough that the architectures can be leveraged to the greatest

extent possible.

Exploring the specific trade offs and consequences of these different approaches to

mapping is a subject of future work. However, we optimistically note a third approach that is not

available in more traditional computational systems. Because both architectures support

knowledge compilation [3, 27, 37, 41], it may be possible, in the long term, to define HLSR

mappings in such a way that the intermediate bridging steps (i.e., the run-time libraries) could be

gradually eliminated from the run-time consideration of the agent. This learning would enable

knowledge specification in the "high level" HLSR language, but (eventual) execution in

unmediated forms on the target platforms, fully and naturally leveraging the specific architecture.

The theories of both Soar and ACT-R support this progression via chunking [27] and

production composition [41]. In practice, both mechanisms have weaknesses that limit their

92

robust use in general systems. HLSR may encourage additional research and development of

these mechanisms. Further, because the patterns of execution generated by the compiler will be

more constrained and predictable than the variation in hand-generated code, it may also be

possible to structure the HLSR compiler to avoid known problems in the learning mechanisms

(e.g., some recent research has been directly motivated by problems in chunking [47, 49]). The

HLSR micro-theories for Soar reflect this goal.

The following sections introduce the micro-theories we developed for the HLSR2Soar

compiler and then detail the implementation of these micro-theories in the HLSR run-time

library for Soar. While tedious and labor-intensive, the exploration of a compiler for the top

down (Soar) mappings was relatively straightforward. However, determining appropriate

approaches to the compilation of bottom up (ACT-R) mappings will require significantly more

research. Without micro-theories (and the run-time library which realizes them), there will be

many more constraints on the compilation process which have to be considered. During this

initial phase of exploration, we chose to more fully evaluate the (more or less straightforward)

compilation from top down mappings. Appendix E outlines what kind of ACT-R program a

bottom up compilation approach might provide.

3.2.5 Results of Feasibility Evaluation

In order to evaluate the feasibility of HLSR, we wanted to show that HLSR programs

could be compiled to Soar and ACT-R but we needed to do so without building a full compiler.

As discussed above, we elaborated the HLSR-to-architecture mappings (see Section 2.6.2) and

defined "micro-theories" that detailed how mappings would actually be realized in Soar systems.

The micro-theories specify the mappings at a very detailed level.

93

top-state.goals (identifier)

goal (identifier)
name (string)
goal-type enum(achievement, maintenance)
goal-subtype (string)
status enum (not-achieved-or-failed, achieved, failed)
supergoal (pointer to a single(??) prior goal)
subgoal (pointers to subgoals used in pursuit of goal)
tags (identifier: general collection of goal tags)

transform (identifier)
(all sub-structure associated with particular transforms)
internal-is-met enum(satisfied, not-satisfied)
internal-is-failed enum(satisfied, not-satisfied)
HLSR-state enum(new-considered, activated, reconsidered)

TEMPLATE: CONSIDER-NEW-GOAL
IF

Activation conditions satisfied (from activator)
THEN

create new goal of specified type (from HLSR code)
annotate goal with any initialization parameters

tag: HLSR-state new-considered

Figure 30: Examples from the Soar micro-theory of HLSR goal representation. The top section indicates how
HLSR goals are represented in Soar declarative memory. The bottom section illustrates a compiler template
that defines how information from a goal's activator should be represented in Soar. The micro-theory theory
also specifies run-time library functionality, such as the production shown in Figure 17.

For example Figure 30 illustrates some of the micro-theory defining HLSR goal processing in

Soar. The micro-theory specifies how an HLSR construct will be represented in Soar (the top

section) and how individual Soar productions can be generated from HLSR statements (the

compiler template in the bottom section). The micro-theory also specifies any needed

functionality in the run-time library. For example, for HLSR goals in Soar, the micro-theory

defines a number of productions that monitor for goal achievement and failure. One of the run-

time productions from the HLSR goals Soar micro-theory is illustrated in Figure 17. The

specific details of the micro-theories developed for Soar for the feasibility demonstration can be

found in Requirements for an HLSR Compiler.

94

Having defined the micro-theories for each Soar construct, we used the micro-theories to

translate the HLSR code for the AMBR speed request response example (as described in Section

3.2.3 and presented, in full, in Appendix C) to Soar. Initially, we executed this process

manually, but towards the end of the project we also automated the generation of Soar

productions for the AMBR example (see the next section for those details).

Table 7 summarizes the results of the feasibility testing. Each row represents the total

production knowledge (second column) and a number of performance metrics for a Soar agent.

The "AMBR Soar" row shows the results from a hand-coded AMBR agent (i.e., one that is

written directly in Soar). The second row presents the results from the hand-compiler

HLSR2Soar agent. Soar's learning mechanism, chunking [27], is used to enable some self-

optimization of performance with experience. The third and fourth row shows the results when

the HLSR2Soar is run on the identical problem (third row) and a slightly different problem

(fourth row), highlighting the difference in performance from the original HLSR2Soar (second

row).

The performance metrics represent ways in which the performance of Soar systems is

typically evaluated. These include total CPU time, the number of decision (perceive-decide-act)

cycles, the total number of assertion cycles (within any decision cycle, Soar fully entails the

current situation by iterative assertion cycles), total production firings, and total memory

changes. Memory changes reflect the number of times an individual object (a Soar working

memory element) is added or deleted from memory. This metric is important because a

significant number of memory changes relative to decisions usually indicate performance

problems.

95

Produc- CPU Decision Assertion Prod Memory
tions (msec) Cycles Cycles Firings Changes

AMBR Soar Agent 27 140 7 15 23 120
HLSR2Soar 142 752 21 97 231 584

(RTL 54)
(Corn 49)

HLSR2Soar 149 551 13 66 144 300
(repeat) (chunks 7)
HLSR2Soar 151 651 18 82 176 420
(different response) (chunks 9) 1

Table 7: Total knowledge and performance comparisons for the feasibility demonstration. Note that RTL
refers to runtime library productions, Corn refers to compiled productions, and chunks refers to productions

learned by Soar during execution.

The total number of productions in the HLSR2Soar agent was about five times greater

than the base agent. The run-time library produces comprised about one-third of the total

productions. This increase was surprisingly small; we expected about an order of magnitude

increase in productions, due to the principle of rule specificity (see Requirements for an HLSR

Compiler) and the overhead of translating HLSR into Soar (due to the limitations of the

mappings). The results suggest that the initial mappings perhaps better leverage the architectural

capability than we thought.

Total run-time also increased by a factor of about five, while decisions increased by a

third, total productions by a factor of 6, and memory changes by about a factor of five. While

the resulting HLSR2Soar agent is obviously slower, the overall performance differences are also

not as great as expected, especially because we deliberately chose to simplify the initial micro-

theories rather than elaborate them and increase complexity. Because memory changes scale

(roughly) with production firings, this example suggests that HLSR2Soar agents will not become

bogged down by memory changes. However, this example was probably of too limited a scale to

understand fully the implications of the HLSR micro-theories on memory changes and overall

expected performance.

96

Whenever any conflict occurs in the decisions of the HLSR2Soar agent, the micro-

theories specify that a Soar impasse should be generated. Forcing the impasse leads to some

initial performance costs, but allows the agent to reason about the conflict and bring any relevant

knowledge to bear. Via Soar's learning mechanism, this approach also allows the agent to cache

the results of its impasse deliberation. When the same task is repeated (third row), the agent

realizes about a 25% speed up in performance. When the tasks are not identical, but similar, the

speed up is more modest,. 13%. However, these results are strongly encouraging, because they

suggest that some of the performance costs of HLSR can be offset via the architectures' learning

mechanisms, resulting in some self-optimization with experience.

3.2.6 Progress towards a prototype HLSR2Soar compiler

In addition to the hand-compilation feasibility demonstration described above, we also

initiated the development of a rudimentary parser and code generation example, to ensure that

we were not overlooking important problems in the automation of the compilation process. We

implemented components of a Tcl-based (http://www.tcl.tk/) HLSR2Soar compiler. Soar is

actually implemented as an extension of Tcl and there is already significant support for

generating and parsing Soar productions implemented in Tcl. However, it is important to note

that Tcl is only appropriate for rapid prototyping; the actual HLSR2Soar must be implemented in

a scalable high-level language that has tools to support development and maintenance.

Tcl-HLSR emulates the syntax of HLSR as described in the HLSR language

specification. HLSR keywords are implemented as TOl commands in the same manner that Tcl

keywords are implemented. The major difference between the Tcl-HLSR syntax and standard

HLSR syntax is that code blocks are delimited with curly braces rather than the "end" keyword.

This change simplified the development of the prototype considerably.

97

The Tcl-HLSR compiler recognizes keyword commands as they are sourced in the HLSR

code file. The "action" of the command is to build a "parse tree" of HLSR objects. Tcl's upvar

command is used to maintain a recursive parse context. When the code is completed, a parse tree

of the HLSR code is represented in memory. This parse tree is then used as the basis for

semantic analysis and code generation.

The code generation process involves traversing the parse tree and generating code as

necessary. We developed a collection of Tcl procedures that simplifies the generation of Soar

productions.

The implementation of the parser portion of the Tcl-HLSR compiler is mostly complete.

The only constructs not covered by the parser are transforms and manipulator bodies. This

incompleteness does not reflect a fundamental problem, but rather that this portion of the

language was still being defined during the time the Tcl-HLSR compiler prototype was being

developed. Furthermore,'manipulator bodies will require "by-hand" parsing in Tcl, because

nested calls to manipulators can't be encoded as Tcl commands. Given these complications, we

did not attempt to implement manipulator bodies in the short period of time we had between their

final definition and the end of the period of technical work for this effort. However, the

prototype parser allowed us to demonstrate that the HLSR language (as defined in the grammar

specification) could be parsed successfully and represented with a parse tree.

We did not make as much progress with code generation. However, we did demonstrate

simple Soar code generation from the Tcl-HLSR-generated parse tree. We focused only on those

elements of the language necessary for the AMBR speed request response example, as described

above. The code generation prototype was sufficient for the activators, terminators, and some

general language constructs from that example.

98

The implementation of the prototype, while very preliminary, does suggest that HLSR

can be compiled, and that the code generation (at least to Soar) can be successfully automated.

We also learned a number of technical lessons from the implementation, which will need to be

addressed in more complete implementations of an HLSR compiler. Examples of these lessons

include the need to define a convention for the naming of productions generated by the compiler,

and the need to extend HLSR to make the unification of initializer and object more

straightforward.

99

4 Results and Conclusions

4.1 Preliminary Evaluation

Our evaluation of HLSR to this point is preliminary. Further evaluations are necessary

subsequent to the development of full scale compilers and large scale HLSR behavior models.

The goal of this preliminary evaluation is to evaluate whether HLSR is capable of meeting its

goals of enabling more efficient behavior development and enabling cross ISA behavior

development.

The feasibility study described in section 3 provided significant insight into the feasibility

of cross ISA compilation of behavior models. Here we provide three higher level evaluations.

First, we describe how well HSLR aids the developer with the common development problems

and solutions discussed in Appendix A. Second, we reflect on the requirements set forward in

section 2.4 and the extent to which HLSR meets them. Third, we revisit the questions posed in

section 2.1.1 and the tentative answers this effort has produced. While none of these evaluations

can be considered conclusive, they do provide insight into the value of HLSR.

4.1.1 Solving Catalog Problems

To see how effectively HLSR helps alleviate some of the common problems and

solutions that behavior developers must manage, we revisit the catalog described in section 2.2.1

and analyze how HLSR makes the developer's task easier. Table 8 provides a summary of the

catalog problems, the potential solution provided by HLSR, and a brief description of any

limitations of, or imposed by, the HLSR approach.

100

Problem/Pattern HLSR Solutions Issues not currently addressed by
HLSR

Process tagging HLSR provides several processes Automatic tagging is constrained to
and constructs that reduce the effort goals for now. Domain specific tags
a developer must spend for still require some developer
bookkeeping and tracking process management, but the built in tagging
tags. operation support makes this easier to

"* Tagging process built into encode and encapsulate.
HLSR

"* Automatic tagging of goals by
transforms

"* Automatic state tracking for
goals and transforms

"* Process constraints provided
in transform bodies

Logic Tricks HLSR provides logical OR and HLSR does not have universal
XOR operations. Furthermore, it quantifiers because they do not have a
prevents hard to maintain logical good mapping to ACT-R. Also,
tricks by restricting what can HLSR requires more developer steps
appear in the left hand side of a to encode complex logic; though the
production. Iteration blocks steps are much more maintainable
substitute for universally quantified than difficult to comprehend logic
variables, blocks.

Copying and HLSR provides the internalize HLSR does not yet support general
Memory command to alleviate the need to copy processes in memory. General
Manipulations create custom sensory system copy operations will be useful for

copying code. HLSR also abstracts planning processes, and should be
away low level details like special added in the future.
cases when replacing one memory
element with another.

Detailed HLSR provides a high-level, HLSR still requires that declarative
Structure ontological description of memory structures have type
Specification declarative knowledge. The details definitions, to allow for maintenance

of how these structures and reuse.
decomposed and laid out in
memory is the responsibility of the

I compiler rather than the developer. I

101

Planning HLSR does not currently have built HLSR still must address planning in
in support for the planning process. future iterations. Likely components
However, it does not prevent to be added are:
planning processes either. * Improved support for general

copying of memory structures
9 Support for execution commands

"in the model's head" rather than
externally

0 Support for ontological
descriptions of process models
used to do projections.

Writing HLSR transform bodies provide The interaction of transform body
production code constructs for encoding constrained constraints and preferences is a new
procedurally processes procedurally. These map concept and has not been fully

to production-based processes in evaluated as to possible complexity it
Soar and ACT-R. Furthermore, adds to development.
HLSR greatly constrains the power
of productions, thus limiting the
hidden constraints and
dependencies.

Knowledge HLSR will compile to an HLSR only provides a first order
Integration intermediate XML form, allowing solution. That is, it helps solve the

integrated knowledge bases. technical format issues, but not
Furthermore, HLSR itself can serve semantic issues such as "what does
as a format for integrating the integrated knowledge mean?"
knowledge across models and
architectures.

Implicit HLSR provides many structures The primary burden for
Semantics and processes for allowing and understanding and encoding domain

requiring domain-independent specific semantics is still on the
semantics to be made explicit, developer. However, type definitions
These include and more highly constrained language
"* Auto-tagging: make process constructs make it easier for the

tagging both explicit and developer to encode these semantics.
automatic.

"* Type definitions: make
structural constraints on
declarative knowledge explicit

"* Process constraints in
transform bodies: Make
processing constraints and
relationships explicit.

"* Activators and terminators:
Make reactive consideration
and reconsideration explicit. I

102

Goal HLSR provides a high-level The developer still is required to
Manipulation representation of a goal that encode the high-level dependencies

abstracts details about how a goal of a goal and to define the conditions
is structured or manipulated in the under which a goal is met or has
underlying ISA. The compiler failed. This is because such
rather than the developer decides information is often domain specific.
the layout and interaction of goal
data and tags.

Perceptual Motor HLSR provides a high-level HLSR's representation may be too
Interaction abstraction for sensing and motor abstract. Part of the reason for this is

actions. This allows the compiler that the ISAs themselves do not yet
to encode consistent and, where have generally accepted models of
necessary, theoretically sound sensing and motor action. As the
perceptual/details for each sensing architectures begin to implement
and motor function. more sophisticated perceptual motor

systems, HLSR will need to be
updated to take advantage of the new
theory and patterns that emerges.

Retrieve v. HLSR hides some of the details of HLSR does not have a good
Compute retrieve vs. compute from the theoretical model of how the retrieve

developer. This is true especially v. compute process should be decided
for learning, where the compiler is and essentially leaves the hard work
responsible for encoding up to the compiler developer.
knowledge so that it can take Furthermore, HLSR does not address
advantage of learning, and then the retrieve v. compute issue for
deciding when to use learned temporal knowledge (that is, do what
knowledge and when to fall back was done in the past, or re-calculate
on more general process it).
knowledge.

Output command HLSR command objects are HLSR does not yet include solutions
structures & modeled after transforms and thus for the highest level semantics
Proprioception have a standard format for tracking associated with commands. This

output command state. The includes being able to specify run-to-
.compiler and motor system are complete, start-stop, and run-while-
responsible for maintaining this present output semantics as described
information, not the developer, in Appendix A. It is not clear yet
Furthermore, a few standard errors whether that level of control will be
are supplied in the HLSR standard needed in HLSR.
library to address common failures
in command execution.

List Management HLSR provides a built in collection Ordered lists are included as part of
type that eliminates the need to the HLSR specification, but the
build ad hoc list management mechanism for implementation may
structures in behavior models. be awkward in practice. Further

I testing is required to be certain.

103

Iteration HLSR provides a built in iteration Numeric-based iteration (e.g. for x =

construct that can be included in 1 to 10) is not directly supported, but
transform bodies. is probably not really needed in most

behavior models.

Understanding HLSR provides an iteration Monitoring based solutions are not
when a process construct for implementing a supported directly by HLSR, but
involving search-based approach for this HLSR does not prevent such
multiple objects problem (see Appendix A). solutions either. This is mainly
is complete because there are no known

abstractions that encapsulate such a
process, with the possible exception

I of aspect oriented programming [24].

Table 8: Catalog of common problems and solutions and the impact of HLSR on them.

We applied three different strategies for managing the problems posed in the catalog.

First, we moved the responsibility for the problem from the developer to the compiler. Examples

of this strategy include auto-tagging, sensory-motor interactions, and goal manipulation details.

This approach has the advantages that the developer no longer has to think about the problem

and the compiler can implement consistent, "best-practice" solutions to the problem.

Unfortunately, this strategy removes all control from the developer and thus is not effective for

problems where developers require some level of control over the solution.

Second, we implemented a solution pattern in HLSR, and left parameters for the

developer to configure the aspects of the behavior that require domain knowledge or careful

control. Examples of this strategy include the improved logic operators, iteration and list

constructs, and transform body constraints. This approach has the advantage that many of the

low-level details are abstracted from the developer, while things the developer cares about

configuring are left available. However, this approach gains its power by constraining the space

of possible solutions to a problem to common solution patterns. If a solution requires something

beyond the standard solution pattern, the developer must solve it without direct HLSR support.

104

Finally, we provided the developer with a set of constructs and processes that are useful

for solving the problems, but did not constrain the solution in any particular way. Examples of

this strategy include the tagging processes and constructs, type definitions for structuring and

encapsulating parts of solutions, and iteration processes for determining when all objects of a

type have been processed. Even planning is supported to some extent using this strategy since

planning processes can take advantage of all of the structure provided by HLSR to better

implement the solution. This approach has the advantage that the developer can build a solution

that best fits the details of the problem. HLSR still provides some support and makes the task

easier than it would have been in native ISA code. However, this solution leaves the solution

highly unconstrained. Thus the developer must understand the solution space well, manage the

details of the solution, and know how to map HLSR constructs to the solution. Overall

developer effort is highest.

In conclusion, we see that HLSR makes many of the tasks that inhibit efficient behavior

development easier. However, HLSR does not solve all of these problems, and it is probable that

HLSR by itself cannot solve all of them. We are convinced that some of the problems

encountered in behavior development are best mitigated by improved architectural processes

such as learning.

The process of building HLSR models will lead to other patterns and solutions common

to HLSR development. These patterns and solutions will be at a higher level of abstraction than

the low level issues discussed here, but are likely to be the source of further efforts to abstract the

behavior development process. This would reflect the general progress of software engineering

over the past decades where each level of abstraction is followed by another level that leads

further toward rapid development.

105

4.1.2 Meeting HLSR Requirements

As part of our analysis we evaluated how well HLSR meets the requirements described in

section 2.4. Our methodology was to score HLSR for each of the six core requirements on a

scale from zero (does not meet requirement at all) to five (completely meets the requirements).

Three of the HLSR team measures scored HLSR against its requirements in this way, and their

scores were averaged to form a final score.

Figure 31 gives a qualitative picture of final results of this evaluation. The colored

regions indicate how well we felt HLSR met each requirement. A pie slice that is completely

shaded with color indicates a requirement that was completely met. A pie slice with no color

shading indicates a requirement that was not met at all.

Developer Reuse

High-Level Packaging

"~- Incremental

Complete & Addition of

Transparent Knowledge

LArchitecture
Architcture Indpendence

Architecture

Figure 31: Results of evaluation of HLSR against its requirements.

Not surprisingly, based on our assertions in section 2.4, HLSR does not meet any

requirement completely. This is because the requirements conflict, and to achieve all of these

requirements simultaneously is impossible. Our goal was to achieve a perfect balance across all

106

requirements. However, our analysis indicates that HLSR currently fulfills the requirement to be

complete and transparent at the expense of leveraging the unique capabilities of the ISAs. That

is, one of the mechanisms used to obtain completeness, was to take some of the behavior control

away from the architecture and give it to the developer. This tradeoff was not complete;

however, as the HLSR specification still leaves a significant amount of power to the architecture

through architecture discretion as discussed in section 0.

In other areas, we feel HLSR has achieved balance between the requirements. In

particular, we all agreed that HLSR provides improved high-level representations, better

packaging, and better support for incremental addition of knowledge than native ISA knowledge.

We also achieved the important goal of being architecture independent. No construct or

constraint in HLSR depends on an underlying ISA construct or process. However, HLSR is

biased toward cognitive architectures over other architectures and would probably require some

design changes to be applied to other types of ISAs.

Obviously, this evaluation was not scientific or statistically significant. The evaluations

are clearly subjective and biased to some extent. However, the evaluators were all experienced

ISA developers and felt collectively that HLSR has made significant progress toward higher-

level behavior development. However, there will be a need for more formal and robust

evaluations in the future.

4.1.3 Answers to Research Questions

In this section we revisit the questions posed in section 2.1.1 and consider them in light of

the progress made in this effort. The answer to the fundamental question of cross-architecture

compatibility is a qualified yes. The feasibility demonstration shows that a higher-level

abstraction can be compiled to both Soar and ACT-R. However, ACT-R and Soar are actually

107

very similar architectures and the problem we chose did not fully exercise all aspects of the

architectures (or of HLSR). Thus, we do not yet know for certain if HLSR will span both Soar

and ACT-R in total and we do not know how well HLSR will generalize to other ISAs. By

looking at HLSR as a distinct architecture, we can easily conclude that HLSR is compilable to

any ISA, given a sufficient mapping and well-developed micro-theories. The. still open question

is the extent to which HLSR can leverage different underlying ISAs using the same language

primitives (i.e., CCRU for beliefs, goals, transforms, etc.)

As Section 4.1.2 summarizes, the project team was not entirely satisfied with the extent

to which HLSR leverages the underlying architecture capabilities. Dissatisfaction arises from

the initial emphasis on functionality over the maximization of ISA leveraging and because each

architecture supports different features more effectively than the other. Because the HLSR

specification is informed by both architectures, it necessarily includes features that do not map as

readily to one of the two architectures. For example, goals map directly into ACT-R structures,

but do not map into any comparable Soar structure. Thus, HLSR goals do not leverage Soar's

built-in capabilities as effectively as they do those of ACT-R. Finally, HLSR constructs may be

inappropriately or improperly defined in this draft version of the language. The initial design

was biased toward making development easier, rather than leveraging architecture capabilities.

Future work on the compilation process will likely result in "push back" from the architectures,

such that the language does better leverage the underlying ISAs.

This effort reinforced and clarified our early notions that ISAs are, conceptually, quite

similar. Importantly, high level designs for these systems also share many similarities. The

differences appear only in the details. The observed similarities depend to some extent on the

108

close similarities of Soar and ACT-R. However, beliefs, desires, and intention (BDI) systems [7,

49] share many of the characteristics of these architectures as well, suggesting a common design

and language approach across the major agent-based approaches is perhaps within reach.

Commonalities and differences between ACT-R and Soar are presented in section 2.3.

The commonalities led directly to many of the HLSR constructs as described in section 2.5,

including the core constructs of goals, transforms, productions, and preferences (section 2.5.1).

Thus the question "can abstractions be designed that take advantage of similarities in ISAs?" was

answered affirmatively.

The principle of architecture discretion defines how we abstract and/or hide architectural

differences. However, as is discussed in 4.4, remains to be explored the extent to which

architecture discretion will ultimately influence behavior and whether that architecture discretion

will be acceptable to developers.

We next address questions of high level programmability. Our analysis described in

4.1.2 indicates that HLSR is complete enough to encode behavior without the need to interact

with the underlying ISA. HLSR has sufficiently powerful constructs to generate goal driven

behavior, reactive behavior, and sensory/motor interaction. It has a memory model capable of

representing any arbitrary structure. Its logic operators, both Boolean and predicate, are

sufficient for implementing all of the standard logic queries.

HLSR's completeness begs the question of whether it is high level. In comparison, to

Soar and ACT-R, it is. Almost every HLSR construct encapsulates multiple underlying ISA

constructs. The runtime libraries required to implement portions of indicates that HLSR is not

just a new interface to existing ISA features, but rather a new abstraction. Because HLSR solves

or makes easier many of the common problems and solutions that developers typically encounter

109

in the details of implementing ISA behavior programs (see 0), these solutions suggest a higher

level of abstraction.

Whether HLSR knowledge can be merged with learned knowledge remains an open

question. As was presented in Section 3.2.5, it is possible to take advantage of the learning

capabilities of the underlying ISA when compiling and executing HLSR knowledge. In fact, the

compile process may make it easier to leverage the learning capabilities of the underlying ISA by

allow ISA experts to tune the compile process such that it emphasizes the structure and

procedures necessary for learning. This could lead to behavior models that learn robustly, even

when less experienced developers build the models. However, the critical issue of mapping

learned ISA knowledge back into HLSR was not explored in this effort. Because this problem

has proven to be a fundamental issue in user adoption for previous attempts to build high level

languages for ISAs [54], addressing this issue will be necessary for the success of HLSR.

The core HLSR constructs defined in 2.5.1 each encapsulates an important aspect of

behavior. Type definitions encapsulate declarative knowledge structure. Goals, transforms, and

preferences encapsulate the important elements of goal-driven behavior. Most importantly,

object-oriented and procedural interfaces provide well defined access to and from these

structures. These encapsulation constructs were not chosen arbitrarily, but were based on our

research into the core capabilities of ISAs and on the design processes used to build ISAs.

Therefore, we are confident that these constructs will be appropriate for constructing behavior

models.

Effective reuse with HLSR is an open question. Reuse depends on many factors

including:

* The ability of other developers to understand the component

110

"* The ability to encapsulate the internal details of the component

"* The ability to effectively expose the aspects of the component that may vary for

different use cases

"* The similarity of the use cases across which reuse is being attempted

For all but the last factor, HLSR provides significant improvements over native ISA

representations. We feel HLSR is easier to understand (e.g. compare the compiled code to the

HLSR code in the appendices). HLSR provides the ability to encapsulate the details of

components into discrete units, and HLSR provides interfaces for facilitating the integration of

components with larger models. However, HLSR cannot address the last factor. If the domains

of reuse are different enough, and the goals and tasks are not similar across use cases, then very

little reuse can be achieved.

HLSR provides some of the core primitive components required for reuse. These include

goals, transforms, and interfaces. The most important of these components is interfaces.

Interfaces are the abstraction behind which coupling hides. That is, interfaces make it easier to

extract and adapt components to different models by isolating the decisions about which

behavior units depend on other behavior units to well defined locations in the model. This

facilitates the least commitment to dependency as described in section 2.2.2.1. Second, we

believe that there are likely to be higher level encapsulation units that HLSR does not yet

support. Among these are heterogeneous units that encapsulate a collection of goals, transforms,

preferences and other constructs and form a behavior unit. Also among these are behavior

templates which would allow a richer set of parameterizations on behavior, thus .allowing

behavior units to adapt to a broader range of models [1, 9, 20, 45].

111

Simple approaches to encapsulation conflict with pattern matching and learning. Pattern

matching is used mainly for reactive behavior such as that provided by activators (section

2.3.3.4). It also plays a role in context driven conflict resolution such as that facilitated by

preferences (section 2.3.2.4). In general it is very difficult to encapsulate knowledge

representations such as productions because they have the potential to reference any memory

element. ISA memory is intentionally designed to be fairly unstructured and globally accessible

to ensure any context available for decision making is available. However, this potentially

conflicts with encapsulation. HLSR query constructs (section 2.5.1.3) provide a buffer between

the details of memory access and the constructs that access memory, but at some point the

detailed mappings must be made between a query and what memory elements it references.

Queries help to isolate those mappings, which are often volatile in that they change for every

component use case. To our knowledge, this two-stage method of encapsulation for ISAs is

novel and has the potential to make more strongly encapsulated modules feasible in ISAs,

without introducing design-time restrictions which limits run-time flexibility. Whether queries

actually improve modularity remains to be evaluated.

Learned knowledge is also difficult to encapsulate. Current ISA learning algorithms tend

to be "bottom up" learning processes. That is they learn small pieces of knowledge that over

time form bigger collections of knowledge that modify behavior. There is no built in support for

constructing higher-level knowledge constructs out of the smaller learned knowledge pieces.

Thus, it is almost impossible to identify the higher-level behavior units within learned knowledge

unless the learning process is very carefully managed by the developer.

Finally, we address questions related to compilation process and efficiency. We explored

two questions: the correctness and tractability of compilation. We have shown that HLSR

112

constructs have implementations in both Soar and ACT-R. However, we have not yet

constructed a complete, automated compiler for this task. The prototype compiles a limited

subset of HLSR into Soar, but it does not compile the most complex HLSR constructs such as

transform bodies. However, most of the HLSR constructs and constraints appear that they can

be automatically compiled straightforwardly.

However, for each ISA, a small subset of HLSR constructs and constraints may be

difficult to automatically compile. For example, in ACT-R each declarative knowledge structure

must be decomposed into "chunks" of limited size to allow spreading activation to function

effectively. The process of decomposing declarative knowledge structures into smaller sized

chunks is typically done by a developer. How appropriately this process can be automated is

unclear.

We did not discover any theoretically intractable problems to compilation. Most HLSR

constructs are not so far removed from the underlying ISA constructs that they require complex

translations. It is possible that intractable problems do exist but have not yet been uncovered.

The most likely candidate for such a problem is the problem of mapping learning back into

HLSR code. Though we have not yet explored this problem sufficiently to make conclusions,

this problem generally requires searching over arbitrary networks of interdependencies in search

of higher-level patterns. This requirement for arbitrary search suggests the problem might be

intractable, at least under current HLSR and ISA constraints.

These answers to the research questions of the project are based on sound support from

the research and the small scale feasibility demonstration described in this final report. Detailed

and more objective answers to these questions must wait for a more complete implementation

and deployment of compilers for both Soar and ACT-R.

113

4.2 Accomplishments Summarized

This effort had both significant research and design components. We summarize our

accomplishments in both, emphasizing results that can impact further work on HLSR and the

field of behavior development in general.

4.2.1 Research Accomplishments

We analyzed and documented the similarities and differences between ISAs. Our

primary focus was on Soar and ACT-R; however, concepts from other approaches, especially

BDI systems were incorporated into our research results. From this analysis we were able to

leverage architecture similarities to form architecture independent abstractions - the foundation

upon which HLSR rests.

We analyzed and documented common problems and solutions encountered by behavior

developers. The results are summarized in Appendix A. This catalog served as a driver for

HLSR constructs and constraints, as well as a metric against which we evaluated the usefulness

of HLSR (section 0).

We explicitly defined several developer and architecture principles (sections 2.2.2, 2.3.3,

and 2.3.4) that serve as guidelines to behavior modeling and the foundations of many HLSR

constructs and constraints.

4.2.2 Language Design Accomplishments

We completed a formal specification for HLSR. This specification describes the

primitive constructs and constraints of HLSR in sufficient detail for compiler implementation

and HLSR development.

114

The HLSR language design provides solutions for a large subset of the catalog problems

and solutions as described in section 0. This implies that HLSR can help to solve real problems

and make behavior development easier and more efficient.

The HLSR language is architecture independent. That is, it does not depend on any

structure, constraint, or process defined in either Soar or ACT-R. Architecture independence

was one of the explicit goals of this effort.

4.2.3 Compiler Design Accomplishments

We completed an initial mapping of HLSR constructs and constraints to both Soar and

ACT-R. This mapping includes an ontological model of Soar, and a set of micro-theories that

define how HLSR constructs and constraints should be interpreted within Soar. The ACT-R

mappings are less comprehensive and in-depth than the Soar mappings (intentionally based on

the statement of work), but are sufficient to show how HLSR knowledge can execute in ACT-R.

We demonstrated the feasibility of compiling HLSR to Soar and ACT-R through a hand-

compiled example problem. This problem included a design, HLSR knowledge that

implemented a slice of that design, and Soar and ACT-R knowledge resulting from the hand

compilation process on the HLSR knowledge. The Soar knowledge was sufficient to be

executed.

We created a prototype compiler that compiles a limited subset of HLSR to Soar. This

prototype is not complete, but shows the feasibility of automatically compiling some of the core

elements of HLSR - in particular activators and goals.

115

4.3 Lessons Learned

We observed several important lessons during this effort specific to both intelligent system

architectures and behavior development:

1. ISAs have much more in common than expected. Though emphasis and low-level

details are different between architectures, the general structure and constructs

used to encode behavior tend are very similar (see 2.3). The development process

for each ISA is also similar. Additional work that crosses architecture boundaries

would benefit the behavior modeling community in general, resulting in the

clarification of aspects of behavior modeling fundamental to intelligence.

Furthermore, cross-architectural understanding will likely lead to ISA

improvements in areas that are poorly supported in individual architectures. The

evolution of the EASE architecture (a hybrid of ACT-R, Soar, and EPIC) typifies

this cross-fertilization and hybridization [10-13].

2. Considering behavior at the HLSR level causes architecture "quirks" to be

highlighted. That is, once we began to think at the level of HLSR, we found it no

longer acceptable to think about the details, workarounds, and hacks that typically

make up significant portions of native ISA behavior models (e.g., those detailed in

the catalog of common problems). This change in perception suggests HLSR is

both high level and useful and that HLSR would have an immediate benefit if fully

implemented.

3. There is an inherent tension between high level representation and leveraging a

specific architecture. ISA neutral abstractions necessarily do not leverage ISAs to

the extent that architecture specific abstractions would. Thus, it remains to be

116

seen if the cross-architectural focus of HLSR is essentially the correct one. On the

positive side, the cross-architectural focus identified representational problems

common to two architectures. However, unless HLSR can be made to

successfully leverage the full capabilities of the underlying ISAs, it is questionable

if it will prove more useful than architecture-specific approaches.

4. Improvements to learning algorithms will probably be needed for efficiency and

knowledge integration. The feasibility demonstration suggests that HLSR will

potentially increase the size of a behavior model about five to ten times. Also,

since native code is no longer hand tuned for specific cases and domains, some of

the processing is more deliberate and slower in order to maintain correctness.

Compiler optimization will inevitably solve some of these issues. However, the

built in adaptation and optimization processes of ISAs may provide an even bigger

factor for optimization. Learning can enable performance speed up, and can

hopefully allow us to better integrate knowledge bases by optimizing access to this

knowledge. However, current learning algorithms (at least in ACT-R and Soar)

cannot provide this optimization robustly. Thus, pressure for self-optimization

may encourage or speed the development of more robust approaches to learning.

5. It is possible to balance engineering and architecture requirements. HLSR

indicates it is possible to constrain and encapsulate behavior models in a way that

makes them more understandable and maintainable. This encapsulation can be

realized without sacrificing the runtime flexibility of ISAs. The open question is

the extent to which the abstractions in HLSR scale to large systems.

117

4.4 Key Open Issues

This effort answered many questions, but also introduced new questions and areas of

further development.

The HLSR specification covers a broad range of behavior; however, some advanced

features were not included in the specification due both to schedule constraints and the desire to

ensure the functionality of basic features. The most notable missing element from the HLSR

specification is the HLSR Standard Library. Though all of the language constructs and

constraints are defined, it remains to specify the details of the standard reusable components of

the language. The process of building this library will include the HLSR specification of these

reusable components and the runtime library components that would be necessary to support

these components in the ISA. The number and types of components that need to be specified

include meta-reasoning type definitions and processes, standard failure objects, and standard

command objects. The effort to define and implement the HLSR Standard Library is likely to

be nearly as significant as building the initial specification itself, but is necessary for HLSR to be

broadly useful in the development of behavior systems.

HLSR also still lacks some of the large scale packaging and template constructs that

would make it easier to package large collections of constructs into behavior units. Future work

on HLSR will seek to add these, and thus further improve the level of abstraction and support for

reuse provided by HLSR.

Though HLSR was heavily informed by analysis of both ISAs and the development

process, its constructs and constraints are biased toward making the development process easier.

Behavior developers are the primary user of HLSR, and optimizing the language to make it and

effective modeling tool makes it more likely HLSR will be used. Further, some of the ISA

118

issues and constraints cannot be fully understood until a fully functional compiler is developed.

Our intention is to use the compiler development process as an opportunity to revisit some of the

constraints and constructs in HLSR and modify them in ways that lead to better leveraging of the

ISAs.

The most significant future development work is the implementation of a fully functional

compiler for both Soar and ACT-R. This process will undoubtedly lead to new questions and

lead to improvements in HLSR as discussed above, but more importantly, it enable the use of

HLSR as a behavior programming tool. Once compilers have been constructed we intend to run

experiments and cases studies to better evaluate the language and its impact on both development

and the behavior of HLSR models.

Part of the process of compiler development will need to include the development of

support tools, especially a debugger. Previous efforts at developing higher level behavior

representations have had significant trouble being accepted because they lacked sufficient

debugging tools [54].

The relationship between HLSR and ISAs also requires further elaboration. The

integration of learning processes with HLSR models must be addressed both from the

perspective of optimization, and understanding learned knowledge at the level of HLSR (see

4.1.3). HLSR may enable larger scale systems than current ISAs can handle. While ACT-R and

Soar do not have theoretical bounds on the knowledge they can process, the implementations of

these ISAs are not always capable of handling very large sets of knowledge (sometimes due to

interactions between the virtual machine software architecture and the limitations of the physical

architecture, such as when operating system paging is necessary for the consideration of an

agent's complete knowledge base). Thus, HLSR will probably drive performance-based

119

refinements to ISA implementations. HLSR systems may also put pressure on ISA designers to

implement portions of HLSR that are not well implemented in each ISA. Ideally, this process

will lead to ISAs that are more complete and effective at generating intelligent behavior. It may

also lead to the creation of a new ISA that integrates the best features of existing ISAs, or at least

those features that best support HLSR.

Finally, we do not yet know if HLSR will scale to the really large models that HLSR was

designed to support. We believe the constructs we have included in HLSR show promise of

scaling well, but there is no formal way to prove this. The only proof is by construction; that is,

by building such a system. Obviously building such models is dependent on having functional

compilers.

120

5 References

[1] Alexandrescu, A., Modern C++ Design: Generic Programming and Design Patterns.
2001, Boston, MA: Addison-Wesley Professional.

[2] Anderson, J. and C. Lebiere, The Atomic Components of Thought. 1998: Lawrence
Erlbaum.

[3] Anderson, J.R., D. Bothell, M.D. Byrne, S. Douglass, C. Lebiere, and Y. Qin, An
integrated theory of the mind. Psychological Review, (in press).

[4] Aschenbrenner, P. and A. Schtirr. Generating Interactive Animations from Visual
Specifications. in 2003 IEEE Symposium on Visual Languages and Formal Methods.
2003. Auckland, NZ.

[5] Beard, J., P. Nielsen, and J. Kiessel. Self-Aware Synthetic Forces: Improved Robustness
Through Qualitative Reasoning. in Proceedings of 2002 Interservice/Industry Training
Simulation and Education Conference. 2002. Orlando, FL.

[6] Best, B. and C. Lebiere. Teamwork, Communication, and Planning in ACT-R Agents
Engaging in Urban Combat in Virtual Environments. in 2003 IJCAJ Workshop on
Cognitive Modeling ofAgents and Multi-Agent Interactions. 2003. Acapulco, Mexico.

[7] Bratman, M., Intentions, Plans, and Practical Reason. 1987, Cambridge, MA: Harvard
University Press.

[8] Card, S., T. Moran, and A. Newell, The psychology of human-computer interaction.
1983, Hillsdale, NJ: Lawrence Erlbaum.

[9] Chandrasekaran, B., Generic tasks in knowledge-based reasoning: High-level building
blocks for expert systems design. IEEE Expert, 1986. 1(3): p. 23-30.

[10] Chong, R.S. and R.E. Wray, Constraints on Architectural Models: Elements ofACT-R,
Soar and EPIC in Human Learning and Performance, in Modeling Human Behavior with
Integrated Cognitive Architectures: Comparison, Evaluation, and Validation, K. Gluck
and R. Pew, Editors. to appear.

[11] Cooper, R., Modelling High-Level Cognitive Processes. 2002: Lawrence Erlbaum
Associates.

[12] Eisenberg, M., End-user Programming, in Handbook of Human-Computer Interaction,
M. Helander, T.K. Landauer, and P. Prabhu, Editors. 1997, Elsevier Science B.V. p.
1127-1146.

[13] Fineberg, M.L., A Comprehensive Taxonomy of Human Behaviors for Synthetic Forces.
1995, Institute for Defense Analyses: Alexandria, VA.

[14] Fodor, J., The modularity of mind. 1983, Cambridge, MA: MIT Press.
[15] Forgy, C.L., RETE: A fast algorithm for many pattern/many object pattern matching

problem. Artificial Intelligence, 1982. 19: p. 17-37.
[16] Freed, M.A. and R.W. Remington. Making human-machine system simulation a practical

engineering tool: An Apex overview, in The 2000 International Conference on Cognitive
Modeling. 2000.

[17] Gamma, E., R. Helm, R. Johnson, and J. Vlissides, Design Patterns: Elements of
Reusable Object-Oriented Software. 1994, Boston, MA: Addison-Wesley.

121

[18] Gluck, K. and R. Pew, eds. Modeling Human Behavior with Integrated Cognitive
Architectures: Comparison, Evaluation, and Validation. to appear.

[19] Gray, W.D., B.E. John, and M.E. Atwood, Project Ernestine: Validating a GOMS
analysis for predicting and explaining real-world performance. Human-Computer
Interaction, 1993. 8(3): p. 237-309.

[20] Htibscher, R. Composing Complex Behavior from Simple Visual Descriptions. in IEEE
Symposium on Visual Languages. 1996. Boulder, CO.

[21] John, B.E., K. Prevas, D.D. Salvucci, and K.T.a.i.C. Koedinger. Predictive human
performance modeling made easy. in CHI 2004 Conference. 2004. Vienna, Austria.

[22] Jones, R.M., J.E. Laird, P.E. Nielsen, K.J. Coulter, P.G. Kenny, and F.V. Koss,
Automated Intelligent Pilots for Combat Flight Simulation. Al Magazine, 1999. 20(1): p.
27-42.

[23] Jones, R.M. and R.E. Wray. Comparative Analysis of Frameworks for Knowledge-
Intensive Intelligent Agents. in AAAI Fall Symposium Series on Achieving Human-level
Intelligence through Integrated Systems and Research. 2004. Alexandria, VA: AAAI
Press.

[24] Kiczales, G., J. Lamping, A. Mendhekar, C. Maeda, C.V. Lopes, J.-M. Loingtier, and J.
Irwin. Aspect-oriented programming. in European Conference on Object-Oriented
Programming (ECOOP). 1997. Finland: Springer-Verlag.

[25] Laird, J.E. and A. Newell, A universal weak method, in The Soar Papers: Research on
Integrated Intelligence, P.S. Rosenbloom, J.E. Laird, and A. Newell, Editors. 1993, MIT
Press: Cambridge, MA. p. 245-292.

[26] Laird, J.E., A. Newell, and P.S. Rosenbloom, Soar: An architecture for general
intelligence. Artificial Intelligence, 1987. 33(3): p. 1-64.

[27] Laird, J.E., P.S. Rosenbloom, and A. Newell, Chunking in Soar. The anatomy of a
general learning mechanism. Machine Learning, 1986. 1(1): p. 11-46.

[28] Lallement, Y. and B.E. John. Cognitive architecture and modeling idiom: A model of the
Wicken's task. in Twentieth Annual Conference of the Cognitive Science Society. 1998.
Madison, Wisconsin.

[29] Lebiere, C., Constrainedfunctionality." Application of the ACT-R cognitive architecture
to the AMBR modeling comparison, in Modeling Human Behavior with Integrated
Cognitive Architectures: Comparison, Evaluation, and Validation, K. Gluck and R. Pew,
Editors. (in preparation), Erlbaum: Mahweh, NJ.

[30] Newell, A., Unified Theories of Cognition. 1990, Cambridge, Massachusetts: Harvard
University Press.

[31] Nielsen, P., J. Beard, J. Kiessel, and J. Beisaw. Robust Behavior Modeling. in I 1th
Computer Generated Forces Conference. 2002.

[32] Noy, N.F. and D.L. McGuinness, Ontology Development 101: A Guide to Creating Your
First Ontology. 2001, Stanford Knowledge Systems Laboratory: Stanford, CA.

[33] Padgham, L. and M. Winikoff, Developing Intelligent Agent Systems: A Practical Guide.
2004, New York: John Wiley & Sons. 230.

[34] Pearson, D.J. and J.E. Laird. Example-driven diagrammatic tools for rapid knowledge
acquisition. in Visualizing Information in Knowledge Engineering Workshop, Knowledge
Capture 2003. 2003. Sanibel Island, FL.

[35] Pew, R., K. Gluck, M. Young, R. Chong, and R. Wray. The AMBR Model Comparison
Project. in Cognitive Science. 2002. Fairfax, VA.

122

[36] Repenning, A. and T. Sumner, Agentsheets: A Medium for Creating Domain-Oriented
Visual Languages. Computer, 1995. 28(March): p. 17-25.

[37] Rosenbloom, P.S. and J. Aasman. Knowledge level and inductive uses of chunking. in
Eighth National Conference on Artificial Intelligence. 1990: AAAI Press.

[38] Rosenbloom, P.S., J.E. Laird, and A. Newell, eds. The Soar Papers: Research on
Integrated Intelligence. 1993, MIT Press: Cambridge, MA.

[39] Salvucci, D.D. and F.J. Lee. Simple cognitive modeling in a complex cognitive
architecture. in Human Factors in Computing Systems.: CHI 2003 Conference. 2003:
ACM Press.

[40] St.Amant, R. and F.E. Ritter. Automated GOMS-to-ACT-R model generation. in
International Conference on Cognitive Modeling. 2004. Pittsburg, PA.

[41] Taatgen, N.A. and F.J. Lee, Production Compilation: A simple mechanism to model
Complex Skill Acquisition. Human Factors, 2003. 45(1): p. 61-76.

[42] Taylor, G. and R.E. Wray. Behavior Design Patterns: Engineering Human Behavior
Models. in 2004 Behavioral Representation in Modeling and Simulation Conference.
2004. Arlington, VA.

[43] Uschold, M. and M. Grininger, Ontologies: Principles, Methods and Applications.
Knowledge Engineering Review, 1996. 11(2): p. 93-155.

[44] van Lent, M. and J.E. Laird. Learning procedural knowledge through observation, in
International Conference on Knowledge Capture. 2001. Victoria, British Columbia,
Canada: ACM Press.

[45] VanLehn, K., ed. Architectures for Intelligence: 22nd Carnegie Mellon Symposium on
Cognition. 1991, LEA: Hillsdale, NJ.

[46] Wooldridge, M.J., Reasoning about Rational Agents. 2000, Cambridge, MA: MIT Press.
[47] Wray, R.E. and R.M. Jones. Resolving Contentions between Initial and Learned

Knowledge. in Proceedings of the 2001 International Conference on Artificial
Intelligence. 2001. Las Vegas, NV.

[48] Wray, R.E. and R.M. Jones, An Introduction to Soar as an Agent Architecture, in
Cognition and Multi-agent Interaction: From Cognitive Modeling to Social Simulation,
R. Sun, Editor. To appear, Cambridge University Press: Cambridge, UK.

[49] Wray, R.E., J.E. Laird, and R.M. Jones. Compilation of Non-Contemporaneous
Constraints. in Proceedings of the Thirteenth National Conference on Artificial
Intelligence. 1996. Portland, Oregon: AAAI Press.

[50] Wray, R.E., J.E. Laird, A. Nuxoll, D. Stokes, and A. Kerfoot. Synthetic Adversaries for
Urban Combat Training. in 2004 Innovative Applications ofArtificial Intelligence
Conference. 2004. San Jose, CA.

[51] Yost, G.R., Acquiring Knowledge in Soar. Intelligent Systems, 1993. 8(3): p. 26-34.

123

6 List of Acronyms

ACT-R Adaptive Control of Thought - Rational. Within this report, ACT-R refers to a

hybrid cognitive architecture combining symbolic and sub-symbolic processes [2,

3].

AMBR Agent-based Modeling and Behavior Representation

AOP Agent oriented programming

ATC Air traffic controller

BDI Belief, desire, intention. BDI is a logic-based methodology for building

competent agents, driven by the basic assumption that intelligent agents ought to

be rational in a formal sense [7, 33, 46].

BNF Backus-Naur form

CCRU Consider, Commit, Reconsider, Unconsider - the four primitive state change

operations that can be performed on any HLSR object.

G2A A GOMS to ACT-R compiler

GOMS Goals, Operators, Methods, and Selection Rules. GOMS is a methodology based

in psychology and human-computer interaction that formalizes many details of

high-level human reasoning and interaction [8, 16, 19].

HLSR High-Level Symbolic Representation

HLSR2Soar The initial HLSR-compiler designed and prototyped in the execution of this

project

ISA Intelligent System Architecture

KE Knowledge engineer

124

00 Object-Oriented

RTL Runtime Library

SME Subject matter expert

Soar Not an acronym. Within this report, "Soar" refers to a cognitive architecture

based on principles of functionalism and parsimony [23, 26, 48].

TAQL Task acquisition language

WME (Soar) Working memory element

XML Extensible Markup Language

125

Appendix A : Complete Catalog of Problems and

Solution Patterns

Catalog of Low-level Details HLSR Should Abstract

Process Tagging

An example of a low-level task is symbolic tagging. Symbolic tagging is the process of

creating and managing information about the processing of one or more objects. A simple

example of symbolic process tagging is marking a message as "sent" after processing it with a

"SendMessage" transform. Symbolic tags are common and often scattered widely throughout

the declarative knowledge of an agent and serve important functional purposes such as

organizing processing information related to knowledge structures and serving as markers for

process control. While functionally necessary for managing processes within the least

commitment framework of cognitive architectures, tags tend to clutter agent knowledge with

small details and repetitive processing.

What is needed is a way to better structure and automatically maintain these process tags

such that they do not clutter the core processing code.

Logic Tricks

Soar and ACT-R only provide direct support for a fairly minimal set of logic operators

and expressions. While functionally complete, these limited logic operators make answering

questions like "are there any objects that have not been processed" as well as simple logical

"OR" conditions very difficult to write and even harder to understand later during maintenance.

This is a source of bugs in intelligent system programs.

126

What is needed is a more developer-friendly set of logical operations that can be mapped

to the more complex logic required for architecture implementation.

Copying and Memory Manipulations

Two common and often painful low-level details in Soar is creating a declarative

structure by copy and populating one to many, and many to many elements of structures. This

process is common, especially when internalizing sensory information. Solutions to this problem

follow the same pattern, but require hand written and maintained copy code for each type of

structure being copied.

In addition, Soar constrains memory such that if an attempt is made to replace a working

memory element (WME) with a WME with the same values using a single production, the WME

is actually removed. While functionally consistent with architecture design principles this

constraint leads to the need to write two productions where, conceptually, one should suffice.

Multiple productions that do the same thing are a source of maintenance errors.

What is needed is to provide convenient standard processes for copying and maintaining

memory structures such as primitives for copying and abstraction of detailed memory

constraints.

Detailed structures specification

The first step in specifying an ACT-R model is the definition of chunk types that will

define which goals can be solved and which chunks can be represented in declarative memory

(incidentally, it is usually considered good form if those are one and the same, but

correspondence is usually imperfect at best). This requires defining for each type its slots, and

127

possibly its parent type (and inherited slots), taking advantage of a single inheritance mechanism.

While in principle there is nothing wrong with that practice, which corresponds to defining the

data structures in a typical computer program, the theoretical restrictions on memory access and

theory makes that specification a very painful, iterative and time-wasting business with highly

dubious cognitive validity.

Goal structures are defined with a particular purpose in mind, and then slots need to be

added to accommodate various information-processing needs, leading to structure bloat. Various

manipulations are attempted to minimize the number of transitory slots, with the result that some

slots often lose any semantic association and become merely structural bins, which is contrary to

their theoretical interpretation. Then chunk structures are further manipulated and duplicated to

provide the other side of functionality, i.e. associative access to information. Often, the strong

restrictions on memory access (sequential, non-backtracking) leads to the insertion of various

shortcuts, duplications and representational gerrymandering with little cognitive plausibility.

What is needed is a representation that abstracts from the hard structure-slot specification

and allows knowledge associations to be expressed naturally, in their intuitive context (when

they are created and/or accessed), and with no additional computational details.

Catalog of High-level Tasks HLSR Should Make Easier

Planning

Here, planning refers to general AI planning which typically involves the following steps:

1. Evaluate the current state of the world as the agent sees it

2. Consider one or more actions on the world, projecting the agent "imagination"

3. Evaluate the imagined state

128

4. Compare the evaluations of the current state to the imagined effects of the various

actions that can be taken. Whichever has the best evaluation is typically chosen.

A planning process typically produces as an output, a list actions and time/decency

constraints on those actions. Plans are executed when the planned actions are taken. In an

unpredictable, interactive environment, it is necessary to replan from time to time to take into

account unanticipated changes in the environment, and change the plan accordingly.

Planning is used in many intelligent system behavior models and in aspects of models that enable

robust execution.

Here are some things typically done in planning:

* Creating and manipulating imaginary states containing a subset of memory relevant to the

planning operation

* Projecting the impact of actions. This requires some model of the impact of an action.

* Evaluating and comparing states (imagined and real). This typically involves the use of a

utility function and some math in traditional systems, though different systems may use

different techniques.

"* Queuing actions for future execution

"* Evaluating actions when it is time to execute them

"* Modifying a plan if it is no longer acceptable

"• Interleaving planning with execution (if an agent always plans, it can never act)

"* Remembering what has already been acted on and what actions have been taken to avoid

"common sense errors" (e.g. undoing an action immediately after doing it).

129

It would be inappropriate to put any dependencies for a particular type of planning algorithm

or process into HLSR; however, features to help with the above processes would make it easier

to build planning systems.

Writing production code procedurally

In Soar and ACT-R, it is often necessary to write lots of little productions to do one

conceptually simple task. Typically, these productions have dependencies, are very closely

related, and do a single high-level task such as operator application or state elaboration (e.g. copy

down relevant information from a higher level). Following the logic of these closely related

productions is difficult because they have subtle dependencies.

HLSR can provide mechanism for specifying closely related productions, but in a way

similar to procedures. The high-level task can be specified explicitly (e.g. execute this sequence

of actions), and the highly dependent set of productions can be generated and maintained by the

compiler.

Knowledge integration

Knowledge integration is the process of integrating knowledge from multiple sources.

Knowledge integration is difficult, even within knowledge bases designed for the same

architecture. The difficulty is due to insufficient encapsulation and modularization and low-level

programming idioms that leverage the underlying architecture in fundamentally different ways.

These problems are not simply poor programming practice, but rather are fundamental issues

related to the core principles and processes of cognitive architectures. For example,

architectures prefer unencapsulated knowledge because it can more easily be brought to bear in

130

any applicable context. Pervasive coupling tends to occur because of the complex dependencies

required for intelligent behaviors.

HLSR can provide mechanisms for better managing and hiding the complexity of

integration, including encapsulation mechanisms, interfaces, and abstraction of the architecture

leveraging mechanism to ensure that components work properly together.

Implicit semantics

Consider the production below (requires knowledge of Soar):

sp expect-response*request-intent-known-for-contact*intent
(state <s> Aoperator <0>

A incoming-message <m>)

(<o> Aname classify-contact
Acontact <c>)

<M> ^name request-intent-known-for-contact
Aperformative reply
Acontent [<< hostile friendly neutral >>

<intent>])

(contact <c> Aintent-known-by-partner t
Aintent <intent>)

Basically, if intent-known-by-partner is t and intent is present, that implies the agent got

intent information from its partner (intent-known-by-partner won't be present

otherwise). Other examples of such implicit semantics include sets of productions intended to

fire in sequence, but with no explicit structuring to indicate this, as well as implicitly defined

declarative structures where the only way to understand the intended declarative structure is by

analyzing a large set of productions that potentially interact with it. Examples of such implicit

semantics are common in both Soar and ACT-R and makes using systems built by others very

difficult.

131

HLSR should make it both possible and required (when appropriate) to declare these

types of semantics as explicitly for both improved error checking and improved maintenance.

Goal Manipulation

Finding the right level of support for goal operations is difficult. In ACT-R up to ACT-R

4.0, a goal stack provided the obvious support for basic operations such as pushing and popping

subgoals on the stack, with only the top goal being accessible at the current time. It was found to

be undesirable for two reasons:

1. The goal stack offered a perfect memory for past goals, a cognitively implausible

proposition

2. It restricted flexibility and reactivity in dynamic environments.

In ACT-R 5.0, the goal stack has been removed and users rely on general-purpose

declarative memory to store and retrieve past goals. This works reasonably well though it can be

brittle and require significant attention to detail, which often leads to some hacks which are not

really any more plausible than the old goal stack.

What is needed is a high-level way of handling goals that provides the required flexibility

to handle dynamic environments without overburdening the user with a complex, heavy-duty

mechanism.

Perceptual/Motor Interaction

In cognitive architectures, procedural and declarative operations are usually the focus of

attention and perceptual/motor operations are usually handled in an ad hoc fashion. Starting with

the PM modules to ACT-R 4.0, further integrated in ACT-R 5.0, ACT-R started treating

132

perceptual and motor operations on an even level with goal and declarative manipulations (the

procedural module is similar but plays a more central role). This had a number of advantages,

including better reactivity and an attractive unification, but handling perceptual and motor

operations at that level usually requires a high level of attention to low-level details that the user

would usually rather not be concerned with because they are often not central to the task at hand.

There is a general intuition that those details are taken care of cognitively in a much more

automated fashion.

HLSR should provide a high-level solution that would inherit the accuracy of the

architectural perceptual/motor modules without requiring dealing with their internal details.

Catalog of Micro-Patterns That Developers Typically Use

Retrieve vs. Compute

In general, this micro-pattern expresses the choice between retrieving a previously stored

solution to a specific problem and recomputing the answer using general procedural means.

Both Soar and ACT-R use mechanisms to automatically store a problem solution after it has

been computed. In Soar, it results in the creation of a new production that links directly

antecedents to conclusions. In ACT-R, reflecting that architecture's procedural-declarative

distinction, the goal holding the solved problem becomes a declarative chunk of information in

long-term memory. This distinction is reflected in the mechanisms for resolving the choice. In

ACT-R, the selection between the more general procedural computation and the more efficient

declarative retrieval is arbitrated through subsymbolic quantities attached to declarative instances

(activation) and production rules (utilities). In Soar, the choice is resolved using symbolic

preferences. While those mechanisms have successfully accounted for increased robustness and

133

efficiency through learning, they are somewhat difficult to automate and often require careful

debugging to ensure that they operate correctly.

HLSR can improve the robustness of those mechanisms through two separate means.

One is to rely on the compiler to analyze the learning process and infer correctly at compile time

the details that human modelers often go through a trial-and-error process to derive. Another

potential solution is to endow HLSR with meta-cognitive knowledge of its own operations to

allow the underlying model to adjust any flaws in its learning at run time.

Output command structures & Proprioception

This would be an HLSR "micro-theory" of the annotations and processing of tags for

outputs. Output processing is not very well defined at the architecture level and so the developer

ends up re-creating a lot work from previous efforts.

For Soar, there are generally three types of output commands:

"* run-to-complete (once initiated, the command runs until completion/failure)

"* start-stop (once initiated, run until a stop command is issued)

"* run-while-present (once initiated, run until command is removed from output link)

There are also different status levels, which generally apply only to

run-to-complete (we haven't explored the other options as much)

"* complete (command completed)

"* did not compute (syntax error/malformed command)

"* pending (command received but not yet executing)

"* executing (command is executing)

"* failed (command has failed)

134

Importantly, there is often explicit proprioceptive feedback associated with commands.

Proprioceptive feedback in most Soar systems is provided on the output-link, rather than the

input-link (and this is the only time in which it is acceptable for outside information to come into

Soar anyplace other than the input-link). One reason for this exception is that matching output

commands to structures on the input-link is hard. Feedback is both comparative (this is where I

want to be, this is where I am) and proprioceptive (Actuators are engaged).

All of these details can be defined by HLSR, so the programmer only needs to identify

that an output was some specific type and HLSR would do the rest. So HLSR would define the

types of output commands and supported processing for each type, and the user would simply

identify the output commands as instances of the supported types.

List management

Creating and managing lists in both Soar and ACT-R is repetitive and clumsy. It often

requires the annotation of objects with links to next and/or previous elements, which clutters the

object with data irrelevant to its core semantics. Furthermore, several productions are needed to

manage the iteration process as there are no built in iteration processes in Soar and ACT-R.

HLSR can improve list management by providing basic container data structures and

basic processes on those structures. The details of which productions are necessary for

implementation can be left to the compiler.

Iteration

Frequently, agents must iterate over items, for example to count or calculate a total of all the

items of some particular type. In Soar 8, this counting generally requires one operator instance

135

for every counted object. This is both inefficient (computationally) and tedious to program

correctly. ACT-R requires similar solutions, but using its own architecture mechanisms.

HLSR should make it easy to count things, perhaps by including as a language

something comparable to an iterator, which would then get expanded into Soar and ACT-R

productions/chunks to actually perform the counting.

Understanding when a process involving multiple objects is complete

Describing this pattern is easiest with an example. Consider a situation where one agent

has command and control of other agents and wishes to ensure that each entity has

acknowledged its orders before beginning to execute a mission. As a developer, you might write

something equivalent to:

If all entities have acknowledged their orders
then consider a goal to execute the mission

This is a typical instance of the general problem where an agent needs to know when

every element of a group has been processed in some way. There are two large categories of

solutions to this problem, with a third hybrid solution.

The first category of solutions involves searching after the process in question has

occurred. For example, searching after all of the orders have been acknowledged. Mentally, the

agent records what messages have been received, and then uses a pattern defined by the

developer to search back over all of the entities of interest and determine if the process has

completed on them all. This approach works well in Soar and is often used in traditional

software systems as well.

136

The second category of solutions involves monitoring a process and gradually building

up the information necessary to answer the overall question (have all agents acknowledged their

orders?). This approach is most effective in the following circumstances:

0 When you know in advance that you need to answer the question (before doing the

process). In fact, this is required.

0 When the search process is too time consuming or prone to failure (e.g. ACT-R)

There are several ways this can be implemented (in fact, their may be a theoretically infinite

number of ways this can be implemented), but here are described three straightforward

approaches.

The first approach is to insert into the processing of each element, code to count how

many elements have been processed. For example, each time an acknowledgement is received

from an entity, add to the count of agents that have acknowledged their orders. When the count

reaches the number of agents that should be responding, then it is clear that all agents have

responded.

The second monitoring approach is to create a collection that contains all of the objects

that have been processed. Now, as each object is processed, move them from the already existing

collection of objects that have not been processed (assuming all have not been processed at the

beginning) into the collection that has been processed. When the collection that contains the non-

processed objects is empty, then the process is complete.

The third approach only works for ordered collections (e.g. words in a sentence). Simply

stated, it is continue processing until the end statement is found (e.g. a period). Then mark the

collection as having been processed.

137

A common thread among the monitoring processes is that they require modification to

the process that's occurring in order to work. In particular you need three things:

"* A monitoring process that executes whenever one object is processed

"* A tag to store the intermediate process information (and, of course, an object to

tag -- it must have a lifetime longer than the process that is occurring).

"* A trigger (e.g. production) that monitors the tag and fires whenever the

information in the tag indicates that the process has occurred for all elements in

the collection.

To be complete (i.e. to handle the case when you are unable to start monitoring on time),

you would need a standalone process (probably an extra goal combined with the transform that is

monitoring progress, and maybe some additional control logic) to essentially do a manual search.

This manual search iterates over each element with the sole purpose of determining if they meet

the processing criteria.

One interesting distinction between the search and monitor approaches is that the search

approach is easy to specify declaratively, and that the monitor approach requires procedural

code. A second distinction is that the search approach is more completely decoupled from the

process being executed on the objects while the monitoring approach requires integration of two

processes -- the core process such as handling and encoding a message, and the secondary

process to monitor progress.

The HLSR solution is not completely clear. One approach might be to allow universally

quantified variables. But this might not work well for ACT-R because of the limited expressive

power of its productions. Another approach might be to provide some sort of iterative search

138

process that is the equivalent of a universal quantifier, but that is does not require as much

production complexity.

139

Appendix B: Standard Behavior Primitives

Behavior primitives are basic, atomic functions that do not require thought but realize the

interface between the cognitive layer and the physical/psychomotor/conceptual layers of

activities. Fineberg [13] offers a number of such primitive operations at varying levels of

abstraction.

Movement Commands

"Move" is a c ommon behavior primitive used by any mobile agent. This primitive

abstracts away the details of how an agent moves, and provides a high-level interface to the

process.

The ways to describe movement are constrained only by the number of freedoms of the

kinematics of the vehicle being operated. HLSR allows the underlying vehicle interface to

define what these degrees of freedom are, but specifies the speed, direction, and rate of change

for each degree.

For example, in a three degree of freedom flight system, the controls that may be varied

are "speed, .. ".heading," and "altitude."

Commands

Command Parameters Explanation
Set controller, real-number, units Make the value of the controller become

the indicated number when measured in
the indicated units

Increase controller, real-number, units Modify the value of the controller by the
indicated number to increase (if
positive) or decrease (if negative) the
current amount of the controller when
measured in the indicated units

140

SetRate controller, positive real-number, Make the rate of change of the indicated
units controller be the indicated number when

measured in the indicated units
Tolerance controller, real-number, units Indicates the value of the acceptable

deviation, in the indicated units, of the
controller.

Values

The following are examples of the values that may be used for the controller parameter

for a vehicle. They are listed in order from most general to most specific. Except in very

degenerate cases, a vehicle should be able to move in two dimensions by adjusting speed and

heading.

"* Speed

" Heading

" Altitude

" Depth

" Pitch

"* Roll

" Yaw

Discussion

The movement command begins the movement process. The actual movement is

asynchronous with the reasoning process. The move command provides no direct feedback,

though the agent should notice a change in its position. The move continues until the value of

the controller is within the indicated tolerance, and then it is maintained within that tolerance

until another movement command is issued.

141

When the indicated value is zero, the vehicle should stop movement along that control

dimension. There should be no variation for tolerance.

Movement rates and tolerances should default to reasonable (non-zero) values if not

specified.

Move commands overwrite previous move commands. When a value is "set" the vehicle

will adjust at the indicated rate until that value is achieved within the indicated tolerance. When

a value is increased, it will be adjusted from the actual current value of that control dimension

(not the currently set value) at the indicated rate until it is within the indicated tolerance.

Any number of move commands may be executed by an entity at once time, but the

vehicle platform may impose additional constraints on the order in which they are carried out.

Failures

Controller failure: The indicated controller cannot be moved because of some internal

damage or misconfiguration.

Unable to execute: If the underlying platform is unable to carry out the movement

command for any reason (e.g., blocked)

Expectation violation: The agent should expect to see a variation in the controller within

a short period of time. If this does not occur, the agent may reissue the command or take

additional corrective actions.

Feedback

The current actual value of the controller should be available to the agent at all times.

142

"* The rate of change of the controller should be available to the agent at all times.

"* The tolerance of the controller should be available to the agent at all times.

Communication Commands

"Communication" is used for interaction between agents or between humans and agents.

This primitive abstracts away the details of how the channels of communication are formed, and

provides a high-level interface for the communication process.

Commands

Command Parameters Explanation
Communicate medium, message Using the indicated medium transmit

the indicated message
SetChannel medium, channel Adjust the channel that the medium is

tuned to, if multiple channels are
possible

Abort medium Cease further transmission of any
uncompleted message on the
indicated medium

Values

The following are examples of the values that may be used for the medium.

* Voice

* Radio

* Data link

* Telephone

Most devices, with the notable exception being voice, have multiple channels. For

example a radio can be set to different frequencies and the telephone can be dialed to different

phone numbers. The actual value of the channel will be dependent on the medium selected.

Once set it will be used for subsequent communications on that medium until changed.

143

The message is a text string, with possible (optional) mark-up for speech synthesis.

Discussion

The actual communication is asynchronous with the reasoning process and may take

some time for the communication to complete. The communication command provides feedback

when the message is complete and indicates that the medium is busy while the message is being

sent. Once transmission has begun, the message cannot be modified, though it may be aborted

and a new message sent.

The channel should default to a reasonable value if not specified.

Communication commands do not overwrite previous communications. If a second

communication is sent, while the medium is busy, the second message should be queued for

transmission once the first message is complete.

The "abort" command will cause all current and queued messages on that medium to be

terminated immediately.

Failures

Medium failure: The medium is damaged or misconfigured.

Feedback

"* Medium busy status: An indication of whether the medium is currently in use.

"* Current channel: The channel each medium is currently tuned to.

144

Message sent (medium, message): The medium has completed transmission of the

indicated message. This message is optional.

Device Deployment Commands

Device deployment commands can be used to initiate a wide range of behaviors that are

carried out by the underlying physical system once set in motion. For example, shooting a

weapon, taking a picture, or pressing a button on a keyboard.

Commands

Command Parameters Explanation
Deploy device Activate the indicated device

Aim device, direction Modify the alignment of the indicated
device to point in the indicated direction

AimAt device, object Modify the alignment of the indicated
device to point at the indicated object

Load device, integer number, units Increase (or decrease) the number of
resources of the indicated unit type

Discussion

The deploy command initiates a process. The actual process is asynchronous with the

reasoning process, and once set into motion it cannot (typically) be undone.

The number of times this process can be repeated may be limited by the resource

consumption of the underlying device, and there will be feedback on the number of available

resources, as well as a command for loading more resources into the device.

The device may or not require aiming in order to be deployed, and may be deployed

without aiming, but the results may be highly undesirable.

145

Failures

Jammed: device failed to deploy due to damage or misconfiguration.

Full: device cannot be loaded with further units

Feedback

"* Deployed: Signals that the message to deploy was received by the device

"* Aimed: Signals that the device is currently aimed at the requested object or in the

requested direction.

"* Resource count: The number of times the device may be deployed before further

loading.

"* Aim direction: The direction the device is currently pointing

"* Locked: An optional value indicating that the device is pointing at an object.

Debugging Commands

Debugging commands are used to assist the task of software development. HLSR

requires that two such commands be provided, though the underlying architecture is encouraged

to provide more.

Commands

Command Parameters Explanation
Print to condition, message When the condition becomes satisfied,
Screen display the indicated message on the

user's screen
Interrupt condition When the condition becomes true, stop

the process in such a way that it may
continued.

146

Values

The conditions are arbitrary expressions that can be evaluated within the underlying

architecture to determine whether they are satisfied.

The message is a parameterized text string.

Discussion

The same set of beliefs match the conditions should only trigger the indicated action

once; however, subsequent new combinations of beliefs which also match the conditions should

again trigger the indicated action.

"• Failures

"* None

"• Feedback

"* Message appears on screen or program halts.

147

Appendix C: Relevant HLSR Code for AMBR

Example

Message Type definition, We inherit multiple versions for
different types
of messages
type Message

Internally defined type
type ContentCollection isa collection of * content isa symbol

References expected for a message
w references from isa Entity
w references to isa Entity
r references contents isa ContentCollection

Create a message with to and a from
init Message(<f> isa Entity, <t> isa Entity)
consider <self>.from <f>
consider <self>.to <t>

end

Access to the message
interface IMessage

Add content to the message only through this interface
manipulator AddContent(<c> isa symbol)
require decide consider <self>.contents.content <c>

end

end

end

Message Type definition, We inherit multiple versions for
different types
of messages
type RequestSpeedChangeMessage isa Message

Expected terms in
string enumeration SpeedRequestTokens
"request"

148

"speed"

"change"
end

Access to the message
interface IRequestSpeedChangeMessage

Gets the speed from the content. Here we depend on the
content

being of the form "speed 500"; however anything could
appear

between speed and 500 (e.g. "speed change 500")
query SpeedRequested(<speed> isa number)
activated contents.content <speed>
contents. IsBefore("speed", <speed>)

end

end

end

blip
This is just a copy of Jacob's blip declaration. However, Im
assuming this
is *not* a sensed type, since there are items here that should
be derived as
well as sensed.'

type Contact isa Entity
w references speed isa number
w references location isa Location3D
w references color isa BlipColor
w references id isa number
w references screen-location isa Location2D

end

Propose a goal when speed request is present
activator ProposeGoalAnswerSpeedRequest

(<message> isa RequestSpeedChangeMessage)
invariant

Must have a sender to instantiate the goal
activated <message>
activated <message>.from <f>

then
consider <g> new AnswerSpeedRequest()

end

149

##########################
Goal
goal AnswerSpeedRequest isa AchievementGoal

Local memory for goal
r references msg isa RequestSpeedChangeMsg

Initializer
init AnswerSpeedRequest (<msg> isa RequestSpeedChangeMsg)
consider <self>.msg <msg>

end

Standard interface for goals
interface IGoal

Im saying this goal is met once we have committed
to a reply and have sent it.
query InternalIsMet(<reply> isa MessageReply)
activated <self>.msg tagged <reply>
activated <reply>.msg tagged MessageSent

end

Can't easily detect failure without some sense
of time. Here is an attempt. The idea is to
believe the goal has failed when I have rejected
a reply. This may or may not make sense depending
on agent design.
query InternalHasFailed(<r> isa string)

past considered <self>.msg tagged <reply>
not past activated <reply> tagged MessageSent

unconsidered <self>.msg tagged <reply>
end

end

##############################
Stuff related to transform
string enumeration SpeedRequestResponseOptions
accept,
reject

end

type SpeedRequestResponse
r references response isa SpeedRequestResponseOptions

end

type AcceptSpeedRequest isa RequestResponse

150

init AcceptSpeedRequest()
consider <self>.response "accept"

end
end

type RejectSpeedRequest isa RequestResponse
init RejectSpeedRequest()
consider <self>.response "reject"

end
end

REW: 2004-04-29: Add activator for the transform
Jacob's note:
The special syntax "for <goal>" is used to consider transforms
which always
bind to a goal. However, you still need to say _which_ goal
on the LHS. In
this case Im saying to propose a SimpleAnswerDecision
transform for any
AcceptRejectResponse goal.

Propose to do execute a simple decision
activator ProposeTransformSimpleAnswerDecision

(<goal> isa AnswerSpeedRequest)
invariant

Assuming no other conditions make sense
activated <goal>

then
consider new SimpleAnswerDecision for <goal>

end

Transform to decide how to answer a speed request
transform SimpleAnswerDecision

references fragments from this interface
references interface ISendMessage

The goal the transform is attempting to achieve
goal isa AnswerSpeedRequest

Transform local memory
references msg isa SpeedRequestMessage

This initializer takes a message. If the transform
is created using a default initializer (one that
does not take the parameter), then the elaboration
below provides the message object.

151

init SimpleAnswserDecision(<m> isa SpeedRequestMessage)
consider <self>.msg <m>

end

Show how an elaboration can work if a default
initializer is used. There is no magic, it is just
a simple copy of goal.msg to the local memory.
elaboration StoreMsg()
invariant
activated <self>.goal.msg <m>

then
consider <self>.msg <m>

end

Core behavior
body(<r> isa SpeedRequestResponse)

These are not explicitly ordered, so the compiler is
free to try to implement the required statement first
if it likes.

Decide the response we want to have
ChooseResponse()

Bind to the choice that was activated.
activated <self>.msg tagged <r>

Now propose a goal to actually send the message

required SendSpeedRqstResponse(<r>)

end

Maniipulators used to execute body
interface # internal unnamed interface

manipulator ChooseResponse()
ordered

I don't have to put the preference consideration
here, it could be external
decide consider new SimpleDecideProdSet
required ProposeChoices()

end
end

manipulator Proposeuhoices (
required choice accept 1
tag <self>.msg as new AcceptSpeedRequest()

152

tag <self>.msg as new RejectSpeedRequest()
end

end

manipulator SendSpeedRqstResponse(<r> isa
SpeedRequestResponse)

This would be part of the general MessageManagement
interface
CreateReplyMessage(<self>.msg, <reply>)
<reply>.contents. Insert(<r>.response)

required decide consider new CommunicateMessage(<reply>)
end

end
end

###############
Preference set referenced in above example
prodset SimpleDecideProdSet

Will reference this interface
references interface IContactSpace

Local relation
references contact isa Contact

Initializer
init SimpleDecideProdSet(<c> isa Contact)
consider <self>.contact <c>

end

All preferences in this set
preferences

If there is a contact ahead of me, prefer to
reject over accept
preference RejectWhenBlocked(<a> isa AcceptSpeedRequest,

<r> isa RejectSpeedRequest)
precond
considered <a>
considered <r>
MessageToContact(<a>, <r>)
ContactAhead(<c>) # Part of the IContactSpace interface

then
prefer commit <r> over <a>

end

153

default preference RejectWhenBlocked(
default preference PreferAcceptSpeedRequest(

<a> isa AcceptSpeedRequest,
<r> isa RejectSpeedRequest)

precond
considered <a>
considered <r>

then
prefer commit <a> over <r>

end
end

interface # An unnamed, internal interface

The complex logic for determining what accept
and reject tags refer to
query MessageToContact(<a> isa AcceptSpeedRequest,

<r> isa RejectSpeedRequest)
exists <a> tagging <m>
exists <r> tagging <m>
<m>.from <self>.contact

end

end

end

154

Appendix D : Relevant Soar Code for the AMBR

Example

The complete Soar code listing is provided as a separate deliverable. This excerpt below

demonstrates the solution approach, but excludes much of the runtime library code necessary to

make this code a fully functional Soar program.

sp [compiled*manipulator-choose-response*propose*accept-speed-
request

(state <s> ^name manipulator-propose-choices
"^transform <t>
"^preference-sets.preference-set.contact <c>)

-(<t> ^local-transform-memory.message.tagged-by.type speed-
request-response)

(<S> ^operator <o> +

(<o> ^name accept-speed-request
"Atransform <t>
"Acontact <c>)

sp [compiled*apply*accept-speed-request*create-response
(state <s> "operator)
(^name accept-speed-request

"^transform.local-transform-memory <loc>
"^contact.id <id>)

(<loc> ^response <res>)
(<res> "type speed-request-response

"^value accept
"^to <id>)

sp [compiled*apply*accept-speed-request*tag-message
(state <s> "operator)
("name accept-speed-request

"^transform. local-transform-memory <loc>)
(<oc> "message <msg>

Aresponse <res>)

155

(<msg> ^tagged-by <res>)
I
Should really be more decisions here...
sp [compiled*manipulator-choose-
response*elaborate*substate*name*manipulator-choose-response

(state <s>
^ superstate.operator <so>)

(<so> ^name manipulator-choose-response)

(<s> ^name manipulator-propose-choices)
]

sp [compiled*manipulator-choose-
response*elaborate*substate*copy*transform

(state <s> Aname manipulator-propose-choices
"^superstate.operator <so>)

(<so> "transform <t>)

(<S> "transform <t>)
I

sp [compiled*manipulator-choose-response*propose*reject-speed-
request

(state <s> ^name manipulator-propose-choices
"Atransform <t>
"^preference-sets.preference-set.contact <c>)

-(<t> ^local-transform-memory.message.tagged-by.type speed-
request-response)

(<S> Aoperator <o> +

(<o> Aname reject-speed-request
"^transform <t>
"^contact <c>)

sp [compiled*apply*reject-speed-request*create-response
(state <s> "operator)
(^name reject-speed-request

"^transform.local-transform-memory <loc>
"Acontact.id <id>)

(<loc> "response <res>)
(<res> "type speed-request-response

"^value reject
"Ato <id>)

156

sp [compiled*apply*reject-speed-request*tag-message
(state <s> "operator)
(Aname reject-speed-request

"^transform.local-transform-memory <loc>)
(<loc> ^message <msg>

"^response <res>)

(<msg> ^tagged-by <res>)

I think we should delete the goal here but, for now, we'll
just mark it
as reconsidered. Whatever element of the compiler deals with
reconsidered
goals, shouldnt propose to re-activate reconsidered
achievement goals
marked as achieved.

sp [hlsr-rtl*asr-hlsr*propose*achievement-goal-achieved
(state <s> "name asr-hlsr

"^goals.goal <g>)
(<g> ^status achieved

"^tags.hlsr-state activated)

(<s> "operator <o> +
(<o> "name achievement-goal-achieved

"^goal <g>)

Make achieved persistent, to ensure we know this goal was
achieved at one time
sp [hlsr-rtl*apply*achievement-goal-achieved*save-status

(state <s> "operator)
("name achievement-goal-achieved

"^goal <g>)
(<g> "status achieved)

(<g> "status achieved)

sp [hlsr-rtl*apply*achievement-goal-achieved*reconsider-goal
(state <s> "operator <o1>)
(^name achievement-goal-achieved

"Agoal.tags <g>)

157

(<g> ^hlsr-state activated)

(<g> ^hlsr-state activated - reconsidered +)

This operator proposes any new-considered goal on the state.
make-new-goal operators should not be indifferent

Invariants must hold in order to activate a goal
sp [hlsr-rtl*asr-hlsr*propose*make-new-goal

(state <s> ^name asr-hlsr
A goals.goal <g>)

(<g> ^tags.hlsr-state new-considered
"^tags.invariants-hold t)

(<s> "operator <o> +
(<o> ^name make-new-goal

"Agoal <g>)
#Compiler would also fill in rest of template stuff here
]

These productions dont appear to do anything, but they
ensure that the goal will stick around, even if the activator
elaboration no longer matches; they make goals persistent

Want to provide o-support for "goal
sp hlsr-rtl*apply*make-new-goal*make-goal-persistent

(state <s> "operator
"^goals <gs>)

(<gs> "goal <g>)
(<o1> "name make-new-goal

"Agoal <g>)

(<gs> "goal <g>)

Want to provide o-support to ea attr under "goal
Do *not* want generally to provide persistence under tags
sp [hlsr-rtl*apply*make-new-goal*make-goal-attrs-persistent

(state <s> "operator <o1>)
("name make-new-goal

"^goal <g>)
(<g> "<attr> <val>)

(<g> ^<attr> <val>)

158

This should terminate the operator
sp [hlsr-rtl*apply*make-new-goal*hlsr-state*activated

(state <s> ^operator)
(^name make-new-goal

"^goal <g>)
(<g> ^tags <t>)

(<t> ^hlsr-state [new-considered <new>])

(<t> ^hlsr-state activated + <new> -)

Computed via elaboration
#sp [hlsr-rtl*apply*make-new-goal*status*in-progress
(state <s> "operator)
("type make-new-goal
A^goal <g>)

(<g> "status in-progress)
#1

This operator proposes any new-considered transform on the
state.
make-new-transform operators should not be indifferent

Invariants must hold in order to activate a goal
sp [hlsr-rtl*asr-hlsr*propose*make-new-transform

(state <s> "name asr-hlsr
Atransforms.transform <g>)

(<g> ^tags.hlsr-state new-considered

"^tags.invariants-hold t)

(<s> ^operator <o> +
(<o> "name make-new-transform

"^transform <g>)
#Compiler would also fill in rest of template stuff here

These productions dont appear to do anything, but they
ensure that the goal will stick around, even if the activator
elaboration no longer matches; they make goals persistent

Want to provide o-support for ^transform
sp [hlsr-rtl*apply*make-new-xform*make-xform-persistent

(state <s> -operator <o0>
"^transforms <gs>)

(<gs> "transform <g>)

159

(^name make-new-transform
^transform <g>)

(<gs> ^transform <g>)
]

Want to provide o-support to ea attr under Atransform

Do *not* want generally to provide persistence under tags
sp [hlsr-rtl*apply*make-new-transform*make-transform-attrs-
persistent

(state <s> Aoperator)
(Aname make-new-transform

Atransform <g>)
(<g> A<attr> <val>)

(<g> ^<attr> <val>)
]

This should terminate the operator
sp [hlsr-rtl*apply*make-new-transform*hlsr-state*activated

(state <s> Aoperator)
(^name make-new-transform

"Atransform <g>)
(<g> ^tags <t>)
(<t> Ahlsr-state [new-considered <new>])

(<t> Ahlsr-state activated + <new> -)
]

This manipulator does two things:
1: activates the SimpleDecidePrefSet
2: executes the ProposeChoices() manipulator

These steps are ordered so I am assuming the
activation of the pref set will set a tag on the
transform. In general, the decision to allow
one manipulator to execute another looks wrong
to me, but Ill go forward for now, using an ONC.

The name of the statement and the name of the
operator should be the same!
sp [compiled*asr-hlsr*propose*manip-choose-response

(state <s> "name asr-hlsr
"^transforms.transform <t>)

(<t> -name simple-answer-declsion
"Astatus executing
"Atags <tg>)

160

(<tg> ^hlsr-state activated

^required-statement <r>)

(<r> ^name manipulator-choose-response
-"status completed)

(<s> ^operator <o> +
(<o> ^name manipulator-choose-response

"^transform <t>)

sp [compiled*apply*manip-choose-response*status*executing
(state <s> ^operator)
("name manipulator-choose-response

"^transform <t>)
(<t> "tags.required-statement <r>)
(<r> "name manipulator-choose-response

"^status not-yet-executed)

(<r> "status not-yet-executed - executing +)

Create the preference set to help make the decisions...
... put contact in here for now.
sp [compiled*apply*manip-choose-response*activate*pref-
set*SimpleDecide

(state <s> ^operator
"preference-sets <p>
"Atop-state.global-objects.contact <c>)

("name manipulator-choose-response
"transform <t>)

(<c> "id <name>)
(<t> "goal.message.from <name>)

(<p> ^preference-set <pl>)
(<pl> "name simple-decide-prefset)

(<p> "preference-set <p-new>)
(<p-new> "name simple-decide-prefset

"Atransform <t>
"^preferences <pf>
"Acontact <c>
"Atags <tg>)

(<tg> "hlsr-state activated)
(<pf> "preference <p1> <p2>)
(<pl> ^name accept-when-clear)
(<p2> ^name reject-when-blocked

161

]

I think this might be a hack -- Im basically terminating the
manipulator when the response is generated. But that occurs
in propose choices. Generally, we may need to represent
required statements in manipulators declaratively, as for
xforms
sp [compiled*apply*manip-choose-response*status*complete

(state <s> "operator)
("name manipulator-choose-response

"^transform <t>)
(<t> ^tags.required-statement <r>

"^local-transform-memory.message.tagged-by.type speed-
request-response)

(<r> ^name manipulator-choose-response
"^status executing)

(<r> ^status executing - completed +)
]
Im not sure if this is smart or a hack. It seems like there
are going to be lots of cases where we just want to check
that some HLSR-level has been taken. This operator checks
an attribute in the transform local memory to determine if
it has been tagged with an object of the type specified
in required statement. It might be easier to make this
come from the compiler, but I think that could lead to many,
many rules where these should suffice -- well see

sp [hlsr-rtl*asr-hlsr*propose*manipulator-confirm-local-object-
tagged-with

(state <s> "name asr-hlsr
"^transforms.transform <t>)

(<t> "tags <tg>
"^local-transform-memory.<attr>.tagged-by.type <tag-

type>)
(<tg> "hlsr-state activated

"^required-statement <r>

(<r> "status not-yet-executed "type manipulator-confirm-
local-object-tagged-with

"^attribute-name <attr>
"^tagged-by <tag-type>)

(-,s> opera-or -0o? t-)
(<o> "name manipulator-confirm-local-object-tagged-with

"^required-statement <r>

162

"^transform <t>

Only action of this operator is to mark the required statement
completed
sp [hlsr-rtl*apply*manipulator-confirm-local-object-tagged-with

(state <s> Aoperator
)

(^name manipulator-confirm-local-object-tagged-with
A required-statement <r>)

(<r> "status not-yet-executed)

(<r> ^status not-yet-executed - completed +)
]

If one of these is competing with a regular manipulator, just
execute this one
first and get it out of the way

Uses assumption that name of non-confirm ops are the same as
required statements -- for confirm
ops, only the required statement type will match op name
sp [hlsr-rtl*asr-hlsr*€ompare*manipulator-confirm-local-object-
tagged-with

(state Ks> "name asr-hlsr
"^operator +

<o2> +
"transforms.transform <t>)

(<t> "tags <tg>)
(<tg> "hlsr-state activated

"^required-statement <r2>)
(<r2> "name <name>

"^status not-yet-executed)
("name manipulator-confirm-local-object-tagged-with)
(<o2> "name <name>)

(<s> "operator > <o2>)
]

Some of this manipulator will be skipped... dont want to go
thru details of sending message

this manipulator requires a response on Lne local trars18f0E1L
state

163

sp [cmie~s-lrpooemniuao-edsedrqet
response

(state <S> Aflame asr-hlsr
Atransforms transform Kt>)

(Kt> Aflame simple-answer-decision
Alocal transform-memory <1>
A tags Ktg>)

(Kres> A'type speed-request-response)

(Ktg> A hlsr-state activated
A required-statement <r>)

(Kr > Aflame manipulator-send-speed-request-response
_Astatus completed)

(<s> "operator <o> +)
(<o> Aflame manipulator-send-speed-request-response

A transform Kt>)

#Not really needed for this implementation but would be if not
for simplifications.
sp [compiled*apply*manipulator-send-speed-request-
response* status *executing

(state <s> Aoperator Kol>)
(Kol> Aflame manipulator-send-speed-request-response

A transform <t>)
(<t> A tags .required-statement Kr>)
(Kr> Aflame manipulator-send-speed-request-response

A^status not-yet-executed)

(Kr> "status not-yet-executed - executing 4-)

goal*send-response
(state <S> A operator Kol>

A goals <g>)
(Kol> Aflame manipulator-send-speed-request-response

A transform <t>)
(Kt> A local-transform-memory. response Kr>

A goal Ksupergoal>)

(Kg> 'goai Kg-new>)
(Kg-new> Aflame send-message

A goal-..type achievement-goal

164

A outgoing-message <r>
A supergoal <supergoal>
Atags <tg>)

(<tg> ^hlsr-state new-considered
Acreated-by <t>)

sp [compiled*apply*manipulator-send-speed-request-
response*status*completed

(state <s> Aoperator)
(^name manipulator-send-speed-request-response

Atransform <t>)
(<t> Atags.required-statement <r>)
(<r> Aname manipulator-send-speed-request-response

Astatus executing)

(<r> ^status executing - completed +)
]
sp [compiled*asr-hlsr*propose*manipulator-tag-message-sent

(state <s> Aname asr-hlsr
Atransforms.transform <t>)

(<t> Afname send-message
Astatus executing
^tags <tgŽ)

(<tg> Ahlsr-state activated
Arequired-statement <r>)

(<r> Aname manipulator-tag-message-sent
_Astatus completed)

(<s> Aoperator <o> +)

(<o> ^name manipulator-tag-message-sent
Atransform <t>)

]

sp [compiled*apply*manip-tag-message-sent-
response*status*executing

(state <s> Aoperator)
(Afname manipulator-tag-message-sent

Atransform <t>)
(<t> Atags.required-statement <r>)
(<r> Aname manipulator-tag-message-sent

Astatus not-yet-executed)

(<r> Astatus not-yet-executed - executing ±)

165

Create the preference set to help make the decisions...
sp [compiled*apply*manip-tag-message-sent*tag-message

(state <s> "operator)
(^name manipulator-tag-message-sent

"^transform <t>)
(<t> "local-transform-memory.outgoing-message <m>)

(<m> ^tagged message-sent)

sp [simulated*apply*manip-tag-message-sent*output-link
(state <s> "operator)
(^name manipulator-tag-message-sent

",transform <t>)
(<t> Alocal-transform-memory.outgoing-message <m>)

(<s> Asim-output-link.message <m>)

I think this might be a hack -- Im basically terminating the
manipulator when the response is generated. But that occurs
in propose choices. Generally, we may need to represent
required statements in. manipulators declaratively, as for
xforms
sp [compiled*apply*manip-tag-message-sent*status*complete

(state <s> "operator)
("name manipulator-tag-message-sent

"Atransform <t>)
(<t> ^tags.required-statement <r>

"Alocal-transform-memory.outgoing-message.tagged message-
sent

(<r> "name manipulator-tag-message-sent
"^status executing)

(<r> "status executing - completed +)

part of activator. When an invariant in an activator object
no longer holds,
the activated object should be reconsidered.

I could make these 1 production but it's simpler just to put
them into different
productions for now. I dont we'll need to access the object
other than the

166

h1sr-state, so I just include a pointer to the object here.

sp [hlsr-rtl*asr-hlsr*propose*reconsider-goal-when-invariants-
no-longer-hold

(state <s> ^name asr-hlsr
^goals.goal <obj>)

(<obj> "tags <t>)
(<t> ^hlsr-state activated

-^invariants-hold t)

(<s> ^operator <o> +
(<o> ^name reconsider-object-when-invariants-no-longer-hold

A goal <obj>)

sp [hlsr-rtl*asr-hlsr*propose*reconsider-transform-when-
invariants-no-longer-hold

(state <S> A name asr-hlsr
A transforms.transform <obj>)

(<obj > A tags <t>)

(<t> A h1sr-state activated
_A invariants-hold t)

(<S> A operator <o> +

(<O> A name reconsider-object-when-invariants-no-longer-hold
A transform <obj>)

Should be the same for any of goals, transforms, beliefs,
preferences
sp [hlsr-rtl*apply*reconsider-object-when-invariants-no-longer-
hold*hlsr-state*reconsidered

(state <S> A operator)

(A name reconsider-object-when-invariants-no-longer-hold
A <object>.tags <t>)

(<t> A h1sr-state <active>)

(<t> A h1sr-state <active> - reconsidered +)

sp [hlsr-rtl*asr-hlsr*propose*reconsider-transform-when-
completed

(state <S> A name asr-hlsr
A transforms.transform <t>)

(<t> "',tags.hisr-state activated
A status completed)

167

(<s> ^operator <o> +)
(<o> ^name reconsider-transform-when-completed

^transform <t>)

sp [hlsr-rtl*apply*reconsider-transform-when-completed*make-

status-persistent
(state <S> Aoperator

)
(<o1> Afname reconsider-transform-when-completed

Atransform <t>)
(<t> Astatus completed)

(<t> Astatus completed)

sp [hlsr-rtl*apply*reconsider-transform-when-
completed*reconsider-transform

(state <s> Aoperator <oi>
)

(Aname reconsider-transform-when-completed
Atransform <t>)

(<t> Atags <tg>)
(<tg> Ahlsr-state activated)

(<tg> ^hlsr-state activated - reconsidered +)
]

168

Appendix E : Relevant ACT-R Code for the AMBR

Example

#1
Goal(-related) types
1#

(chunk-type goal ;;; single inheritance
;;; all chunks are named - no slot
type ;;; kind of goal - not subtype
state ;;; current status of goal
parent ;;; previous or constituent
;;; local slots defined for each subtype
tags ;;; only most recent)

(chunk-type tag ;;; also subtypes of tags
goal ;;; tag points back to goal
hlsr-state ;;; current state)

(chunk-type (answer-speed-request (:include goal)))

;;; Achievement goals
;;; Any particular slots? Assuming one slot called achieved

(chunk-type (achievement-goal (:include goal))
achieved)

;;; Goal: AcceptRejectResponse
;;; Note: chunk/goal slots are not typed
;;; Interestingly, they were in ACT-RN for pattern decoding
purposes

(chunk-type (accept-reject-response (:include achievement-
goal))

msg)

#1
Chunk types:
Use the chunk type hierarchy to reflect the object type
inheritance.
At this point no onjecz has so many fields cs LU IRLeiL

decomposition into multiple chunk (types), though contact is
starting to get close.

169

I#

(chunk-type message from)
(chunk-type (request-speed-change-message (:include message))
(chunk-type entity)
(chunk-type (contact (:include entity))
speed location color id screen-location)

#1
Transform-related chunks and chunk types
Again, the chunk type hierarchy is used, but also the
specification of default initial values for the init conditions.I#

(chunk-type speed-request-response-options)

(add-dm
(accept isa speed-request-response-options)
(reject isa speed-request-response-options))

(chunk-type speed-request-response response)

(chunk-type (accept-speed-request (:include request-response)))
(response "accept"))

(chunk-type (reject-speed-request (:include request-response)))
(response "reject"))

#1
Activators:
Decomposes into two productions:
One to generate and focus on the goal
The second to generate the tag
I#

(p propose-goal-answer-speed-request-create
=goal>

isa goal
=retrieval>

isa request-speed-change-message
from =from

+retrieval>
isa tag
hlsr-state new-considered
invariants-hold t

170

+goal> ;;; Creates a new goal
isa answer-speed-request
type achievement-goal
message =retrieval
tags initialize)

(p propose-goal-answer-speed-request-tag
=goal>

isa answer-speed-request
tags initialize

=retrieval>
isa tag
hlsr-state new-considered
invariants-hold t

=retrieval> ;;;Creates new tag pointing to goal
goal =goal

=goal> ;;; Goal also points to tag
tags =retrieval)

#1
Interfaces can be represented as productions detecting specific
sets of conditions
As usual, because of the conditions on memory access, those
tests will involve buffer contents. It is left to the
discretion of the compiler how those contents got there.
For instance, if an explicit retrieval is attempted in a typical
retrieve-test production pair, then that retrieval will take
time and trigger questions of plausibility since it is not just
a passive test but an active one. If on the other hand the
interface consists of only the test, then it depends on some
other productions to field the buffer with the correct content,
and thus is not an independent piece of behavior. We will go
this way here however.
1#

(p internal-is-met
=goal>
isa accept-reject-response

msg =msg
=retrieval>
isa message
reply =msg
status sent

=goal>
achieved t)

171

#I
We will represent failure here as failure to perform a past
retrieval, such as retrieving the reply message tested in
InternalIsMet condition.
I #

(p failed
=goal>
isa accept-reject-response
msg =msg

=retrieval>
isa failure

=goal>
achieved failed)

#1
Transforms correspond to sets of productions. They could be
grouped around a particular goal created to that effect. For
illustration and differentiation, we will define them here as
applying to a general goal with a specific slot value indicating
the transfer in progress.
An activator then becomes a production that sets that slot value
to trigger the tranform productions matching that slot-value
pattern. Here we assume that a special slot called transform is
used to that effect.I#

(p propose-transform-simple-answer-decision
=goal>
isa accept-reject-response
transform nil

=goal>
transform simple-answer-decision)

(p simple-answer-decision
=goal>
isa accept-reject-response
msg =msg
transform simple-answer-decision

+retrieval>
isa message
reply =msg

+goal>

172

isa choose-response
reply =retrieval)

(p send-speed-request-response
=goal>
isa accept-reject-response
msg =msg

=retrieval>
isa message
reply =msg

+goal>
isa send-speed-request-response
response =retrieval)

#1
The same reasoning as applied to transforms could apply to
manipulators.
In this case, both for illustration and differentiation, we will
represent the manipulator as a specific goal with associated
productions.
I#

(p accept-speed-request
=goal>
isa choose-response
reply =retrieval
=retrieval>
isa message
reply =msg
response nil

=retrieval>
response "accept")

(p reject-speed-request
=goal>
isa choose-response
reply =retrieval
=retrieval>
isa message
reply =msg
response nil

=retrieval>
response "reject")

173

(p send-speed-request-response
=goal>
isa send-speed-request-response
response =retrieval
=retrieval>
isa message
reply =msg
response =response

+goal>
isa reply
content =response)

#1
Preferences can be represented as setting production utilities,
which arbitrate in conflict resolution, but this requires that
they be independent of other considerations, such as conditions
on values. Otherwise, they need to be explicitly represented as
productions steering conflict resolution one way or another.
Here, we will illustrate both: utilities to prefer accept over
reject, but a special production to test for reject condition.
I#

(spp accept-speed-request :p 0.6)

(spp reject-speed-request :p 0.4)

(p condition-reject-speed-request
=goal>
isa choose-response
reply =retrieval
=retrieval>
isa message
reply =msg
response nil
=visual>
isa contact
position ahead

=retrieval>
response "reject")

174

